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Abstract— A specialization of the generic Dynamic Movement
Primitives (DMP) framework is proposed in this article to
correctly address a key activity for human robot collaboration
that is object exchange. As a first step towards implementing
this challenging skill, this paper focuses on the arm motion to
reach the initially unknown exchange site. Two improvements
related with this application are proposed. First of all a better
control of the transition in between the two mains components
of the DMP –respectively providing a skill shape-attractor and a
goal-attractor– is described, enabling to define when and how
the transition in between these two components occur. Then an
extension to handle situations where the goal position varies
along time is proposed, which improves the convergence of the
trajectory towards a moving target (i.e. the human partner’s
hand). These two improvements are validated by comparing the
obtained behavior with human observations realized through
motion capture.

I. INTRODUCTION

The realization of robotic tasks in non completely con-
trolled environment requires to provide the robotic system
with a motion control scheme that adapts its behavior to the
observed situation. Sensor-based approaches such as visual
servoing [3] define the control law as a closed loop minimiza-
tion of the error observed in between the current and desired
visual feature values. Depending on the framework used, the
robot motion can be optimal in the configuration space or in
the image feature space. However, these approaches, in their
basic versions, are strongly goal-driven and do not allow
reproducing more complex skills in which the whole motion
profile is as important as the convergence towards the goal.

The learning of complex behaviors can be addressed
by programming by demonstration approaches, in which
the robot imitates a task demonstrated either by a human
operator observed with a motion capture system, or by
manually moving the robot itself.Statistical approaches are
frequently used for the learning. In [11], Hidden Markov
Models are used to recognize and reproduce nine different
full body expressions by a simulated humanoid. Calinon et
al. propose in [2] to combine Gaussian Mixture Models and
Gaussian Mixture Regression to reproduce several grasping
tasks taught through kinesthetics. The Dynamic Movement
Primitives (DMP) method is another approach studied in that
field. Initially introduced by Ijspeert et al. [10], the DMP
approach relies on a non-linear dynamical system forced to
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follow a desired trajectory by a parametric forcing term.
It is proposed in this article to specialize the basic DMP
framework to the special case of human-robot interaction
during an object transfer.

Physical human-robot interaction, and specifically object
exchange, is a key aspect to get a fluid and efficient human
robot collaboration. Several recent works are focusing on
this specific situation: [6] shows that the human partner can
reduce the complexity of this task by adapting to the robot
behavior; [8] implements different velocity profiles for the
robot, and compares the results with human-human exchange
procedures; direct vs. indirect (placing the object on a flat
surface for the person to grasp) exchange procedures are
compared in [4]; and [1] focuses mostly on making the
robot transmit the intent of performing an exchange. In [13]
the concrete exchange procedure is handled within an off-
line planning scheme. The A∗ algorithm is used to estimate
the best trajectory to exchange the object with the human
partner, based on a 3D cost map which combines three cost
functions focused on safety, visibility and arm convenience
criteria. Once the optimal exchange path is obtained, the
actual trajectory to follow is computed with the Soft Motion
Trajectory planner, allowing active control of maximum
jerks, accelerations and velocities [12]. Nevertheless, the
obtained trajectory plan is not explicitly driven by the human
observation, and neither designed to adapt to the partner
behavior, which is something inherent to the DMP approach
proposed here. It is furthermore proved here that the initial
stage of exchange location can be skipped by adapting
accordingly the DMP framework.

This paper is proposing a DMP specialization for realizing
human robot object exchanges. As a first step, the focus
is set on the definition of the control system to bring the
robotic arm towards the exchange site. Two improvements
of the basic DMP framework are proposed, in relation with
the exchange application. The first one is related to a
better control of the transition between the feed-forward and
feedback components of the DMP by introducing a custom
weighing function. The second one addresses the dynamic
nature of the goal position in exchange motions; a velocity
based feedback term is appended to the DMP system which
improves convergence with the moving goal.

This present paper is organized as follows: next section
provides the needed background related to the DMP. Sec-
tion III describes the two extensions proposed, and the last
section compares the resulting scheme’s behavior with real
human-human exchange data recorded with motion capture
equipment.
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II. DYNAMIC MOVEMENT PRIMITIVES
A. Original formulation

The DMP framework learns a trajectory from just one
reference sample. It can then reproduce it and optionally
adapt it to different configurations. This is achieved by
using a second order linear dynamical system (i.e. a damped
spring-like model) which is stimulated with a non-linear
forcing term. Let x(t) denote a one-dimensional trajectory
starting at x(t0) = x0 towards x(t f ) = g. In the original DMP
framework the following system is introduced [9]:

τ v̇ = K(g− x)−Dv+(g− x0) f (s) (1a)
τ ẋ = v, (1b)

with the forcing term f representing an arbitrary non-linear
function as a sum of weighted exponential basis functions:

f (s) =
∑

N
i=1 ψi(s)wi

∑
N
i=1 ψi(s)

s, (2)

and:
ψi(s) = exp(−hi(s− ci)

2). (3)

The above dynamical system, named transformation system
by the authors, is composed of two driving components, aside
of the global damping term −Dv:
• K(g− x) is an attractor towards the goal position.
• (g−x0) f (s) represents the contribution of the non-linear

forcing term scaled by the g− x0 factor.
The variable s on which the forcing term depends is a phase
variable and its evolution is determined by the following
decoupled linear system, called the canonical system:

τ ṡ =−αs (4)

This variable evolves exponentially from 1 to 0. It is used to
remove the direct time dependency of the forcing term f (s),
and provides the complete system with a time scalability by
adjusting the parameter τ . The phase variable is also used
to weigh the forcing term, enabling this way to continuously
shift towards a purely goal-attracted system.

When considering multi-dimensional trajectories, either
the complete system above needs to be replicated or, as
proposed in [9], a common canonical system can be used
for all dimensions, with specific transformation systems for
each dimension.

B. Bio-inspired formulation
In [7], Hoffmann highlights that this formulation has

scaling issues when the goal position g is close to the
trajectory starting point x0. Furthermore, this model does
not adapt correctly to situations where the goal parameter
is set to the opposite side of the trajectory origin x0 with
the respect to the original: the complete trajectory is then
completely inverted. A slightly different bio-inspired model
is thus proposed, based on evidence obtained on in vivo
studies on frogs. This modified DMP formulation is:

τ v̇ = sK(
f (s)

s
+ x0− x)+(1− s)K(g− x)−Dv (5a)

τ ẋ = v (5b)

Similarly, this system is mainly composed of two attractor
fields:
• The term K(g− x) is an attractor towards the goal

position (from now on referred to as the goal-attractor).
• The term K( f (s)

s +x0−x) represents an attractor towards
the moving point f (s)

s + x0 (the shape-attractor).
Each of these attractor fields has its influence weighed
according to the evolution of the phase variable: the shape-
attractor, weighed by s, is predominant in the beginning of
the movement, when s≈ 1; while the goal-attractor, weighed
by (1− s), is predominant in the end of the movement, as
s→ 0.

This formulation bypasses the issues arising when the goal
is close to the origin of the trajectory, and vastly improves the
adaptation to new goals since the shape-attractor does not
scale anymore with (g−x0). Also, the addition of the x0 com-
ponent on the shape-attractor enables the system to behave
properly when the initial starting point is changed. These
two properties together make the system affine transform-
invariant when learning multi-dimensional trajectories.

C. Trajectory learning

The learning procedure is the same in both models. The
first step is to give values to the parameters of the system:
• K and D involve the inherent dynamics of the second

order linear system, and determine its response to on-
line changes in the goal parameter.

• τ is the time constant and should be set to the duration
of the sample trajectory τ = t f − t0.

• α determines the decay rate of the phase variable. A
value α ≈ 4 will ensure that s≈ 0.02 at t = τ .

Once these values are fixed, the next step is to compute
the desired values for the forcing term, by isolating it from
(5a) (or (1a) for the first formulation), which results in:

fdes(s) =
1
K
(τ v̇−K(g− x)+Dv+K(g− x0)s) (6)

and then inserting the values of the sample trajectory x= x(t),
v = τ ẋ(t) and v̇ = τ ẍ(t), by taking into account the nominal
evolution of the phase variable s = exp(−α

τ
t).

With these desired values for the forcing term, the appro-
priate centers and widths of the basis exponentials in (2) can
be set, and the weights wi can be computed by fitting (2) to
(6) by least squares.

D. Limitations with respect to the intended application

Both the above formulations are quite sensitive to varia-
tions in the goal from the very beginning, as illustrated on
Fig. 1, where a sample trajectory x(t) (black solid line) is
learnt and reproduced with the goal changed from 1 to 1.5
from the beginning. In the case of the original formulation
(red curve), the contribution of g in both the shape-attractor
and goal-attractor (see (1a)) makes both components scale
when the goal is changed. In the case of the bio-inspired
formulation, as it can be seen on (5a), the shape-attractor is
not affected by the goal parameter. Nevertheless, by studying
the evolution of the phase variable (Fig. 2)one can observe



that more weight is given to the goal-attractor for t > 0.173τ

(i.e. starting at less than 20% of the trajectory duration).
Thus, from this early moment, any variation of the goal
with respect to the reference one has a strong effect which
overrides the influence of the shape-attractor term.

As previously mentioned, the application we are consid-
ering is the arm control during an object exchange with a
human partner. The involvement of the human in the loop
requires the robotic system to deal with the exchange location
uncertainty. It also naturally constraints the robot motions to
be human-friendly or fluent.

One of the means to improve the fluency of object ex-
change is to overlap the motion of the robot with the motion
of the human partner, without waiting for the human to reach
a stable position to start moving. A solution to achieve this
is to launch the robot motion using an estimation of the
exchange site, as proposed in [13]. Nevertheless, this initial
guess would still need to be adjusted on-line to adjust the
robot motions to the human behavior.

To avoid this initial estimation, we are proposing to set the
DMP goal to the current position of the hand of the human
partner from the beginning of the movement generation. This
enables to ensure the convergence towards the exchange site
(which is currently assumed to be the human’s final hand
location). Nevertheless, from this perspective, the fact that
the DMP generator is too sensitive to alterations in the goal
parameter is considered as a shortcoming, since the initial
goal fed to the system can be quite different to the position
reached by the non predictable human partner.

In addition, the analysis of the human behavior suggests
that reaching motions performed by humans contain two
successive components [5]:
• The onset of the movement is performed based on

imperfect target information and mostly determined by
an internal dynamical model and feed-forward control.

• The final part is dominated by visual feedback control,
once the target position information gets more precise.

This evidence supports the objective of initiating the
movement with a dominantly feed-forward control policy,
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Fig. 1. Sensitivity of both the original (red curve) and the bio-inspired
DMP (blue curve) generated motions with respect to a change in the goal.
The black curve represents the learn trajectory.
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Fig. 2. Evolution of the weights of the shape-attractor (in black) and the
goal-attractor (in red) within the original and bio-inspired DMP models.

and delaying the shift of weights towards the feedback
component of the DMP transformation system to later in the
trajectory. This way the first part of motion is mainly shape-
driven, and less dependent on the goal variation, while the
second part takes care of the convergence towards the goal.
Next section presents the proposed modifications to the DMP
method to achieve this desired behavior.

III. EXTENSION OF THE DMP MODEL

A. Decoupled weighing function

Two approaches are considered to modify the evolution
of importance of each term driving the motion generation in
the transformation system:

• A change in the evolution of the phase variable can
change the weight balance between the two components.
This can be used to delay the shift of importance from
the shape-attractor towards the goal-attractor.

• A decoupling of the weights applied to each of the terms
in the transformation system from the phase variable.
Instead of weighing the attractors directly with the phase
variable, an arbitrary function of the phase variable can
be used to compute the desired weights.

The first approach proposed requires to find an appropriate
substitute for the canonical system with the desired evolution,
and in some cases this system might be difficult or even
impossible to find without recurring to piecewise or unstable
systems. Also, changing the evolution of the phase variable
by means of altering the canonical system affects all the
dimensions of the trajectory being reproduced by the DMP
method.

The second approach is interesting in the sense that the
canonical system can be kept in its original form. Further-
more, each of the transformation systems depending on the
same phase variable can use a different weighing function
if needed. Therefore it is decided to stick with this second
approach which is considered more versatile.

The new system equations which use the decoupling
approach proposed are ( fw(s) and wg(s) are respectively



noted fw and wg for notational compactness):

τ v̇ = (1−wg)( fw + x0− x)+wgK(g− x)−Dv (7a)
τ ẋ = v (7b)
τ ṡ =−αs, (7c)

where fw(s) is now defined as:

fw(s) =
∑

N
i=1 ψi(s)wi

∑
N
i=1 ψi(s)

. (8)

In comparison with (2) the phase variable s is not included in
the (8) anymore, since it’s not longer required for the forcing
term to fade away.

Note that the gain K multiplying the shape-attractor in
(5a) has been dropped as well, since it does not have any
effect at all on the system response; this is obvious by
observing how the desired values of the forcing term are
computed with (6).

It is proposed to use a weighing function in the shape of
a sigmoid similar to the Cumulative Distribution Function
(CDF) of the Normal distribution. This function has the
advantage of relying on two parameters which easily allow
determining when the shift will occur (the mean µ of
the Normal distribution) and the duration of the shift (the
standard deviation σ of the distribution). Fig. 3 shows several
variations obtained by changing these two parameters. The
expression for the function is, substituting the dependency
on s for dependency on time:

wg(t) = 0.5
[

1+ er f
(

t−µ

σ
√

2

)]
, (9)

where er f stands for the Gauss error function.
This weighing function has one problem, which becomes

evident when the formula for the desired shape of the forcing
term fw(s) is computed. To obtain the desired fw(s) one
needs to isolate it from (7a), resulting in:

fw =
1

(1−wg)
(τ v̇−wgK(g− x)+Dv)− x0 + x (10)

(where the dependence on s has been dropped again for
compactness). It is easy to see that this expression tends to
infinity as wg→ 1, thus causing numerical issues. A simple
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Fig. 3. Weighing function wg(t) with different sets of parameters

product of the sigmoid function with a linear term (e.g.
starting at 0.9 for t = 0 and tending towards 1 as t→ τ) solves
this problem, while still ensuring that the shape-attractor
influence is fading away when s→ 0 (i.e. t→ τ). This results
on the functions shown in Fig. 4.

By using the Decoupled DMP formulation proposed in
(7a), (7b) and (7c), the moment where the change of goal
affects the output of the DMP algorithm can be adjusted at
will. Fig. 5 illustrates the behavior of the new formulation
proposed. The original trajectory learnt as well as the value
of the goal set during execution are the same as the one
used in Fig. 1. Three trajectories are generated with different
values of µ , showing how the system output is affected. In
the three cases, the g parameter is set to its final value g= 1.5
from the beginning of the trajectory, but this only affects
the trajectory at the chosen point in time. Notice that the
rightmost case, with µ = 0.7, switches to the goal-attractor
too late for the trajectory to reach the goal at t = τ , although
it will reach it shortly after, since by that time the system is
almost purely a stable linear second order system.

B. Adpatation for dynamic goals

As previously mentioned, and as a first simplification,
the DMP goal is set to the position of the human partner’s
hand. If [13] proposes to realize an off-line estimation of the
best exchange location, our approach presents the advantage
of avoiding such estimation, while maintaining a reactive
process so that the robot adapts to the human behavior and
not the contrary.

However, in some cases, and even if the modification
explained in the previous section is in place, the fact of using
the human’s current hand position as goal at each instant
in the motion generation may introduce some undesired
oscillations in the resulting trajectory. The example on Fig. 6
shows this effect with a set of data from real human motion.
In this figure the black line shows the original trajectory
used to learn the robot motion; the blue line shows the
observed motion of the human partner, with whom the robot
is performing the exchange operation; the red line repre-
sents the generated trajectory (with the DMP modifications
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Fig. 4. Weighing function modified to avoid divide-by-zero numerical
errors using the same color code as in Fig. 3
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Fig. 5. Decoupled DMP with different values of µ and σ = 0.05.

presented) as response to the observed movement. It can be
seen that, given that the partner’s position is lagging with
respect to the robot’s one when the shift of weights is done
in favor of the goal-attractor, the robot motion reverses for
a certain time lapse. This oscillation is not desired, and a
gentle deceleration would be much more convenient.

To alleviate this issue, a modification of the model is
proposed which improves the smoothness of the convergence
towards a moving goal. This modification consists in adding
a velocity feedback term to the transformation system, re-
sulting in:

τ v̇ = (1−wg)( fw + x0− x)+wg[K(g− x)+Kvġ]−Dv (11)

Fig. 9 on the following section shows the response trajec-
tory generated to the same observed human motion, with the
velocity feedback term in place.

IV. EXPERIMENTAL VALIDATION

To validate the proposed technique before implementing it
onto a real robotic system, some tests have been performed
on real data involving two persons exchanging different
objects from different locations, as shown in Fig. 7. Markers
were installed on the human bodies, mainly on the right arm
of each partner (on the shoulder, elbow and hand), although
in the present study only the hand markers are effectively
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Fig. 6. Oscillation with the DMP proposed in section III-A.

used. Markers were tracked using a Vicon motion capture
system. The DMP version presented in this paper was used to
learn the three Cartesian dimensions of the right hand motion
data from a selected sequence. Then data from different
sequences have been used as observed human motions, and
the resulting generated trajectories have been compared to
the recorded response of the partner.

The resulting behavior for one specific data set is shown
in Figs. 8, 9 and 10. In each of these figures the black solid
line represents the sample trajectory used for learning, the
blue solid line represents the data used as ”observed” Human
hand position, the red solid line represents the output of the
proposed DMP method, the dotted blue line represents the
real recorded response of the other Human partner to the
movement in the solid blue line, and the solid green line
shows the response of the bio-inspired DMP formulation
under the same conditions. The measured positions are in
millimeters, and the reference used for the data capture is
located on the floor between the two users, oriented as shown
in Fig. 7, where the XYZ axis are colored in RGB order.

Also, for every motion dimension being learnt the same
set of parameters has been used for the weighing function:
µ = 0.7 and σ = 0.05.

It can be seen that the generated trajectories adjust to
the observed partner trajectory without loosing the inherent
dynamics of the sample trajectory from which they were
learnt.

It is also evident that the trajectory generated resembles
much more closely the real recorded response of the human
partner than the response of the bio-inspired DMP method.
This supports the idea that the previous versions of the DMP
do actually require an initial estimation of the exchange
location, since using the current hand position of the partner
as goal creates some unpredictable and undesired effects
in the motion generated, especially on Figs 8 and 9. As
illustrated on these examples, The extended model we are
proposing does not require such initial estimation to provide
a satisfactory behavior.

V. CONCLUSIONS

This article has proposed an extension of the DMP frame-
work to correctly learn and reproduce the human arm ap-
proach during an object transfer procedure. By changing
the phase variable behavior, we obtain a better control of

Fig. 7. Motion capture data aquired (left) and a picture of the capture
sessions (right).
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the transition in between the shape-attractor and the goal-
attractor, thus avoiding the need for an exchange location
estimation. Furthermore, by adding in the transformation
system a compensation for the goal velocity, the model
obtained improves its convergence towards moving targets. It
would be interesting to investigate how these improvements
could benefit other applications of the DMP framework.

These experiments do not take yet into account the re-
sponse of the human partner to the robot motion; indeed,
the behavior of the human might not be equivalent when
interacting with a person or with a robot. In order to
complete the validation of our approach and to analyze the
perception and reaction of the human when interacting with
such system, at the time of writing this article, this method is
being implemented onto a real robotic setup. The equipment
used is a Kuka LWR robot, mounted onto a vertical structure
to resemble the configuration of a human shoulder and arm;
and a Kinect device to capture the motion of the human
partner in front of the robot.

Finally, one of the main issues that will need to be tackled
regarding such application is the triggering of the robotic
motion start to get a perfect timing with the human partner.
The proper implementation of such a triggering method
will indeed highly influence the real time behavior of the
presented technique.
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Fig. 10. Evolution of the generated trajectory in the Z axis.

REFERENCES

[1] M. Cakmak, S. Srinivasa, M.K. Lee, S. Kiesler, and J. Forlizzi. Using
Spatial and Temporal Contrast for Fluent Robot-Human Hand-overs.
In ACM/IEEE International Conference on Human-Robot Interaction,
2011.

[2] S. Calinon, F. Guenter, and A. Billard. On learning, representing,
and generalizing a task in a humanoid robot. IEEE transactions on
systems, man, and cybernetics, 37(2):286–298, April 2007.

[3] F. Chaumette and S. Hutchinson. Visual servo control, part 2:
Advanced approaches. IEEE Robotics and Automation Magazine,
14(1):109–118, March 2007.

[4] Y.S. Choi, T. Chen, A. Jain, C. Anderson, J. Glass, and C. Kemp.
Hand It Over or Set It Down: A User Study of Object Delivery with
an Assistive Mobile Manipulator. In IEEE International Symposium
on Robot and Human Interactive Communication, 2009.

[5] M. Desmurget and S. Grafton. Forward modeling allows feedback
control for fast reaching movements. Trends in cognitive sciences,
4(11):423–431, November 2000.

[6] A. Edsinger and C. Kemp. Human-Robot Interaction for Cooperative
Manipulation : Handing Objects to One Another. In IEEE Interna-
tional Symposium on Robot and Human Interactive Communication,
2007.

[7] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal. Biologically-
inspired dynamical systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance. IEEE International
Conference on Robotics and Automation, pages 2587–2592, May 2009.

[8] M. Huber, M. Rickert, A. Knoll, T. Brandt, and S. Glasauer. Human-
Robot Interaction in Handing-Over Tasks. In IEEE International
Symposium on Robot and Human Interactive Communication, pages
107–112, 2008.

[9] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Learning Nonlinear Dynamical Systems Models. Neural Computation,
pages 1–33, 2010.

[10] A. Ijspeert, J. Nakanishi, T. Shibata, and S. Schaal. Nonlinear
dynamical systems for imitation with humanoid robots. IEEE-RAS
International Conference on Humanoid Robots, 2001.

[11] D. Lee and Y. Nakamura. Mimesis scheme using a monocular vision
system on a humanoid robot. In IEEE International Conference on
Robotics and Automation, pages 10–14, April 2007.

[12] E. Sisbot, L. Marin-Urias, R. Alami, and T. Simeon. A human aware
mobile robot motion planner. IEEE Transactions on Robotics, 23(5),
2007.

[13] E. Sisbot, L. Marin-Urias, X. Broquere, D. Sidobre, and R. Alami.
Synthesizing robot motions adapted to human presence. International
Journal of Social Robotics, 2(3), 2010.


