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Preface 
 
 
Robotic	 systems	have	been	originally	 seen	 as	 simple	 substitutes	 of	 the	human	beings	 in	 repetitive	
and	dangerous	tasks.	Consequently,	for	many	years	efficiency	has	represented	the	main	requirement	
–	when	 not	 the	 sole	 –	 to	 be	 pursued	 during	 the	 synthesis	 of	 controllers.	 Nevertheless,	 as	 soon	 as	
robots	have	been	introduced	in	 industrial	or	daily‐life	environments,	the	 limits	of	such	choice	have	
immediately	emerged.	 It	 is	now	evident	that	actual	applications	 impose	to	develop	systems	able	to	
sense	 the	 environment	 and	 react	 against	 unforeseen	 events.	 This	 is	 certainly	 true	 in	 the	 case	 of	
industrial	applications,	but	 it	becomes	 fundamental	 for	systems	where	a	close	 interaction	between	
humans	and	robots	is	expected. 
 
In	this	sense,	online	motion	planning	recently	has	drawn	increasing	interest,	as	robots	have	started	
to	 gain	 the	 sensorial	 and	 actuation	 capabilities	 to	 effectively	 perceive	 their	 environment.	 Online	
planning	schemes	must	evidently	be	characterized	by	the	same	optimality	capabilities	of	their	early	
offline	predecessors.	Numerous	 interaction	control	and	motion	schemes	have	been	developed,	 and	
some	of	 them	have	 already	 reached	 the	 industrial	 field.	However,	 even	 though	 there	 exists	 a	wide	
variety	 of	 –	 mostly	 offline	 and	 without	 reactive	 behaviors	 –	 approaches	 to	 problems	 of	 motion	
generation,	there	is	still	no	unifying	concept	that	connects	(A)	higher‐level	approaches,	that	consider	
cognitive	 perceptual	 abilities	 to	 perform	 task‐based	 online	 motion	 planning,	 to	 (B)	 lower‐level	
approaches	 that	provide	 the	 ability	 of	 reflex	motions	 triggered	by	 sensor	 signals	 and	 events.	 Such	
multilevel	 planning	 schemes	 are	 typical	 of	 human	 beings	 that	 naturally	 use	 multiple	 motion	
generation	 layers,	which	are	well	 connected	 to	each	other.	For	 instance,	monosynaptic	 reflexes	are	
triggered	 in	our	 spinal	 cord,	 and,	 above	 this	most	 fundamental	 loop,	we	can	 find	 further	anatomic	
systems	for	our	motor	skills,	in	particular	the	cerebrum	and	the	cerebellum. 
 
The	 formulation	of	 a	holistic	 approach	 for	 the	 several	 layers	 of	 online	 robot	motion	 generation,	 in	
combination	 with	 autonomous	 high‐level	 perception‐action	 loops	 and	 learning	 processes,	 by	 also	
taking	the	dynamic	and	global	uncertainties	of	the	environment	into	account,	still	remains	an	open	
problem.	In	order	to	tackle	these	interdisciplinary	challenges,	this	full‐day	workshop	intends	to	bring	
together	world‐renowned	researchers	from	fields	directly	or	indirectly	related	to	the	field	of	online	
motion	planning	with	an	emphasis	on	real‐time	concepts	and	reactive	motion	generation. 
 
We	would	like	to	take	this	opportunity	to	express	our	thanks	and	appreciations	to	all	speakers	and	
authors	as	well	as	to	all	attendees	of	the	workshop	for	taking	part	in	and	contributing	to	this	work‐
shop.	We	warmly	welcome	you	to	Vila	Moura! 
 
 
 
Torsten Kroeger 
Corrado Guarino Lo Bianco 
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Dynamic Envelopes and Robustly, Continuously Collision-free Trajectories

RayomandVatcha, Jinglin Li, and Jing Xiao

Department of Computer Science

University of North Carolina at Charlotte

xiao@uncc.edu

ABSTRACT

In  an  unpredictable  real-world  environment,  how  the  objects  move  is  usually  not  known 
beforehand. Thus, whether a robot trajectory is safely collision-free or not has to be tested on-line 
based on sensing as the robot moves in the environment and taking into account robot motion 
uncertainty. The problem is more challenging if the robot has a high degree of freedom, such as a 
mobile  manipulator.  In  this  talk,  we  introduce  a  general  on-line  approach  to  test  if  a  given 
trajectory segment of the robot, which can have high-DOF, is continuously collision-free,  and 
moreover,  if  the trajectory segment is  robustly  collision-free,  that is,  if  some deviation of the 
trajectory within certain “tunnel” of the configuration-time space of the robot is also continuously 
collision-free.  Our method is based on the novel concept of dynamic envelopes [1], which takes 
advantage of progressive sensing over time without predicting motions of obstacles or assuming 
specific obstacle motion patterns. 

Assume that every obstacle in the unpredictable environment can have a linear speed no greater 
than vmax. Let R(C) be the physical region occupied by the robot at configuration C. To test if the 
robot at configuration  C and future time  t is collision-free or not, i.e., if the configuration-time 
point x = (C, t) is collision-free or not, we define a dynamic envelope E(x, τ) as the closed surface 
surrounding  R(C),  such that  the minimum distance between  R(C)  and  E(x,  τ)   is  vmax(t-τ),  for 
sensing time  τ  <  t. If  E(x,  τ) is free of obstacle,  x= (C,  t) is detected collision-free for sure at 
sensing time  τ. As  E(x,  τ) is a function of  τ, this concept facilitates progressive sensing over a 
period  time  to  detect  if  (C,  t)  is  surely collision-free  or  not  before time  t.  Moreover,  if  the 
configuration-time point (C, t) is detected collision-free, we will show that a neighborhood of (C, 
t) is also collision-free. Based on that, we will further introduce an on-line approach to test if a 
continuous “tunnel” of trajectories in the robot’s configuration-time space is collision-free or not 
by checking  if  a  set  of  discrete  configuration-time  points  are  collision-free  or  not  [2].  Thus, 
through the concept of dynamic envelopes, we can achieve on-line testing of whether a trajectory 
segment is continuously and robustly collision-free or not. This approach can be used by a real-
time motion planner,  such as  the RAMP [3],  to  plan  continuously and robustly collision-free 
trajectories in unpredictable environment.

If a robot has multiple rigid links, a dynamic envelope can be viewed as the union of dynamic  
envelopes for individual links, which are usually of simple shapes. Therefore, the detection of 
whether a dynamic envelope intersects an obstacle can be performed quite efficiently via existing 
fast collision detection algorithms. However, if a robot consists of deformable links, such as a 
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continuum manipulator, existing intersection detection algorithms based on mesh models of rigid 
objects are less suitable. We have developed an efficient intersection detection algorithm between 
an n-section continuum manipulator, with deformable sections, and mesh models of obstacles [4]. 
The algorithm directly applies to on-line intersection checking between a dynamic envelope of a 
continuum manipulator  and obstacles.  The intersection  checking for  each  robot  configuration 
takes  only a  few percent  of  the  time  required  by an  existing  mesh-based  collision  detection 
algorithm. 

REFERENCES

[1] R. Vatcha and J. Xiao, “Perceived CT-Space for Motion Planning in Unknown
and Unpredictable Environments,” Algorithmic Foundation of Robotics VIII (G.S.
Chirikjian, H. Choset, M. Morales, and T. Murphey, Editors), pp. 183-198, Springer, 2010.

[2]  R.  Vatcha  and  J.  Xiao,  “Discovering  Guaranteed  Continuously  Collision-free  Robot 
Trajectories in an Unknown and Unpredictable Environment,”  Proceedings of 2009 IEEE/RSJ  
International Conference on Intelligent Robots and Systems, Oct. 2009.

[3] J. Vannoy and J. Xiao, “Real-time Adaptive Motion Planning (RAMP) of Mobile Manipulators 
in  Dynamic  Environments  with  Unforeseen  Changes,”  IEEE  Transactions  on  Robotics, 
24(5):1199-1212, Oct. 2008.

[4] J. Li and J. Xiao, “Exact and Efficient Collision Detection for a Multi-section
Continuum Manipulator,” Proceedings of 2012 IEEE International Conference
on Robotics and Automation, May 2012.
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“Design Principles” for Real-World Motion Generation Algorithms

Oliver Brock

Dept. of Computer Engineering and Microelectronics
Robotics and Biology Laboratory

Technische Universität Berlin, Germany

ABSTRACT

Motion planning research has left the simulated world behind and is now generating motion for 
physical robots in real-world environments. But can we complete this transition into the real world 
solely through incremental improvements of existing algorithms? Or do the challenges we face - 
real-time  requirements,  uncertainty,  and  the  necessity  to  consider  sensing  -  require  more 
fundamental  changes  in  the way we approach robot  motion?  Not exclusively for  the  sake  of 
discussion, I will argue that the answer should be yes!  I will propose five "principles" for the 
design of motion generation algorithms. They deviate from common wisdom in motion planning 
(as far as I understand it) but help in addressing the challenges mentioned above.

1) Seek incompleteness
2) Balance exploration and exploitation
3) Shift the boundary between planning and control
4) Consider planning and sensing as a whole and not as two integrated parts
5) Know what you can and can't know and deal with uncertainty accordingly

REFERENCES

[1] Nicolas Kuhnen, Arne Sieverling, and Oliver Brock.  Motion Generation under Realistic 
Uncertainty.  Manuscript, 2012.
[2] Yuandong Yang and Oliver Brock. Elastic roadmaps - motion generation for autonomous 
mobile manipulation. Autonomous Robots 28(1):113-130, 2010.
[3] Markus Rickert, Oliver Brock and Alois Knoll. Balancing Exploration and Exploitation in 
Motion Planning. IEEE International Conference on Robotics and Automation, pp. 2812-2817, 
2008.
[4] Brendan  Burns  and  Oliver  Brock.  Toward  Optimal  Configuration  Space  Sampling. 
Proceedings of Robotics: Science and Systems, pp. 105-112, 2005.
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Bootstrapping Online Motion Planning

Sachin Chitta

Willow Garage Inc.
Menlo Park, CA, USA

ABSTRACT

Robots working in the real world will have to deal with dynamic, uncertain environments. They 
will need to motion plan quickly and generate efficient predictable motions. One approach to this 
problem is to make motion planning quicker, i.e. develop faster planners that can quickly plan 
from scratch.  Randomized  planners  have  had  great  success  in  doing  this  and  are  capable  of 
generating new plans very quickly. Another approach to speeding up online motion planning is to 
take advantage of a priori information, exploiting the structure inherent in most environments and 
tasks and reusing information from previous plans. In this talk, I will present our approach to 
using offline information to speed up online planning and make it  more realtime. In our first 
approach,  we  deal  with  the  problem  of  motion  planning  with  geometric  constraints,  using 
approximations  computed  offline  to  speed  up  online  planning.  In  our  second  approach,  we 
introduce the concept of Experience Graphs which aim to capture previous motion plans and reuse 
them when possible while still gracefully degenerating to planning from scratch when necessary. I 
will present results from both approaches for mobile manipulation tasks using the PR2 robot.

REFERENCES

[1] Motion  Planning  With  Constraints  Using Configuration  Space  Approximations,  Sucan, 
Ioan A.., and Chitta, Sachin, IEEE/RSJ IROS 2012, Vilamoura, Algarve, Portugal, (In Press)
[2] E-Graphs:  Bootstrapping  Planning  with  Experience  Graphs,  Phillips,  Michael.,  Cohen, 
Benjamin.,  Chitta,  Sachin.,  and  Likhachev,  Maxim,  Robotics  Science  and  Systems  (RSS), 
07/2012, Sydney, Australia, (2012)
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Hybrid Planning: Task-Space Control and Sampling-Based Planning

Robert Haschke

Abstract— We propose a hybrid approach to motion planning
for redundant robots, which combines a powerful control
framework with a sampling-based planner. We argue that a suit-
ably chosen task controller already manages a huge amount of
trajectory planning work. However, due to its local approach to
obstacle avoidance, it may get stuck in local minima. Therefore
we augment it with a globally acting planner, which operates in
a lower-dimensional search space, thus circumventing the curse
of dimensionality afflicting modern, many-DoF robots.

I. INTRODUCTION

Modern two-handed service robots pose enormous chal-
lenges to planning and control, especially because they
operate in highly cluttered and dynamic environments next
to humans, thus demanding efficient, online and real-time
capable motion planning and control algorithms. While there
exist powerful sampling-based planning methods, which can
solve complicated problems (for an overview see [1]), they
typically suffer from the curse of dimensionality: the plan-
ning effort increases exponentially with the number of de-
grees of freedom. Modern two-handed, multi-fingered robots
easily have more than 50 DoFs, rendering these approaches
infeasible for real-world applications.

In order to deal with this complexity, most approaches
decompose planning into independent subproblems. For ex-
ample in grasping, a pre-determined database of grasps for
a given object is used to relax the need to plan for the
hand motion [2], [3]. Given a set of feasible grasps from
this database, the planning can be restricted to the motion
of the end effector to reach appropriate hand poses. This
planning step is further subdivided into placement of the
robot base and subsequent arm motion. However, due to their
complexity and their need for pre-computed task knowledge,
these algorithms are not yet deployable in unstructured and
dynamic environments.

On the other hand, there exist powerful control-based
methods, especially the control basis framework of Grupen
et al. [4], [5], which provide online-capable approaches
to planning and motion generation utilizing gradient-based
optimization of suitable cost functions (to reach the object,
establish contact, maximize grasp stability, and avoid obsta-
cles and joint limits). However, these methods – due to their
local approach – can become trapped in local minima.

The central idea of our work is the integration of local
control and global planning into a hybrid approach, which
tries to exploit the advantages of both while avoiding their

This work was supported by the Center of Excellence Cognitive Inter-
action Technology (CITEC) and the Honda Research Institute Europe. The
author is with the Neuroinformatics Group at Bielefeld University, Germany.
rhaschke@techfak.uni-bielefeld.de

drawbacks: sampling-based planning, which acts globally,
is restricted to a low-dimensional, well-suited task-space.
This dramatically reduces the search space [6], but also
restricts the amount of feasible solutions. To counteract this
negative effect, an intelligent local control method exploits
the redundancy in the task’s null space to increase the success
rate of motions between randomly sampled via points.

Sharing the work between local control and global plan-
ning allows the global planner to operate on a coarser scale,
thus speeding up the overall planning process.

II. HYBRID PLANNING

In the following, we first outline the capabilities of task-
space control methods, then we summarize the expansive
space tree approach, which we employ for sampling-based
planning, and finally introduce the hybrid approach itself.

A. Task Space Control

Task-space control methods are founded on the fact, that
there exists a (locally) linear correlation of joint movements
q̇ and corresponding velocities ẋ of task-space coordinates,
which can be easily inverted using the pseudo-inverse of the
describing Jacobian J(q) [7]:

q̇ = J+(q) · ẋ . (1)

In order to deal with numerical instabilities in the vicinity of
singularities, several approximative methods were proposed,
including singular value decomposition and damped least
squares [7]. Redundancy induced by a smaller number of
task-space dimensions compared to the number of joints can
be exploited to maximize an arbitrary function H . To this
end, the gradient ∇qH(q) is projected to the null space of
J to limit the motion to the redundant space [8]:

q̇ = J+ · ẋ +N · ∇t
qH(q) , (2)

where N(q) = 1 − J+J is the null space projector of J .
The main idea of the control basis framework (CBF) [4]
is to assume, that the null space motion is generated by
a subordinate task controller, J2, which recursively applies
the gradient projection method (2), thus composing complex
controllers from simpler ones in an hierarchical fashion:

q̇ = q̇1 +N1(q̇2 +N2(q3 + · · · ))
= J+

1 ẋ1 −N1(J+
2 ẋ2 +N2(J+

3 ẋ3 + · · · )) . (3)

By choosing suitable task representations, one can generate
naturally looking, smooth movements in a simple fashion. A
major drawback of nowadays motion planning approaches
is their attempt to fully specify the end-effector pose in
6D. However, many tasks – due to their inherent symmetry
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Fig. 1. Goal-directed task-space motion with collision avoidance. Left: Restricting avoidance motions to redundant space yields a straight line motion of
the end effector. Middle: Using relaxed motion control (8), the trajectory more strongly avoids the obstacle for larger weights β, but does not converge to
the target anymore. Right: Dynamic adaption of β achieves both goals, target reaching and obstacle avoidance (in this example).

– do not require this. For example, grasping a cylindrical
object, like a bottle, only requires to align the hand axis
with the object axis, the orientation angle around this axis
can freely be chosen [9]. To allow even more flexibility,
one may specify a task-space interval instead of a distinct
target [10]. Platt et al. propose even more abstract controllers,
e.g. to maintain force closure, to optimize grasp quality,
manipulability, or visibility [5].

Our own implementation of CBF [11], further allows to
compose more complex tasks from simpler ones, by (i)
stacking Jacobians (solving multiple tasks simultaneously
with equal priority), (ii) subtraction of Jacobians (solving
relative motion tasks, e.g. left relative to right hand), and
(iii) adapting the Jacobian, for example to control the mere
distance to a target, i.e.

J ′ = (x− xgoal)
t · J (4)

In the latter case, the task-space motion ẋ is a straight-line
towards the goal, much like in classical Cartesian control.
However, the redundant space at a given goal distance is the
complete sphere around the target and any null space motion
is automatically projected onto this sphere. In this manner,
we can easily approach spherical objects for grasping from
any direction, without the need to precompute a multitude
of feasible grasps in advance.

B. Local Collision Avoidance

In the context of motion planning, an important subordi-
nate optimization criterion to be applied in the redundant
space is of course collision and joint limit avoidance. Joint
limits can be easily avoided minimizing a quadratic or
higher-order polynomial function [8], [9]:

Hq =
∑

wi (qi − qref
i )p wi = (qmax

i − qmin
i )−1 , (5)

where qref defines a reference pose, e.g. in the middle of the
joint range, and the wi’s weight the contribution of individual
joints according to their overall motion range.

Local collision avoidance is achieved by a repelling force
field originating from each object. To this end, Sugiura [12]
proposes to minimize a quadratic cost function defined on

the distance dp = ‖p1−p2‖ between the two closest points
p1 and p2 on the robot and the obstacle:

Hca(p1,p2) =

{
η (dp − dB)2 dp < dB

0 otherwise
(6)

Here, dB acts as a distance threshold below which the force
field becomes active and η is a gain parameter. If active, the
cost gradient can be computed in terms of the body point
Jacobians by applying the chain rule:

∇t
qHca = 2η (1− dB/dp)(Jp1

− Jp2
)t(p1 − p2) , (7)

which is easily formulated in the control basis framework.
If we employ this cost function for Eq. (2), we yield
straight-line task-space movements (e.g. of the end-effector
in Cartesian space), while the redundancy is exploited to
circumvent obstacles as schematically shown in Fig. 1, left.

To allow more flexible obstacle avoidance, in [13] we
proposed a relaxed motion control scheme, which allows
deviations from straight-line motions, if the robot gets too
close to obstacles:

q̇ = J+(ẋ− β ẋca)−N(∇Hca +∇Hq) . (8)

Here, additionally to the null-space motion, which minimizes
a superposition of both cost functions Hq and Hca, an
obstacle avoidance motion ẋca directly occurs in task-space
as well. This velocity is determined by projecting the cost
gradient (7) to the task space:

ẋca = J ∇t
qHca . (9)

Choosing different values of the weight β, we can smoothly
adjust the importance of collision avoidance and target
reaching as shown in Fig. 1, middle. However, because
both contributions might be contradicting, the target is not
always reached with β > 0. To prevent this, we can ensure,
that the goal-directed motion always dominates the collision
avoidance motion with a margin ε, if we dynamically adapt
β, such that the following condition is fulfilled [14]:

‖ẋ‖ − ε ≥ β‖ẋca‖ . (10)
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Algorithm 1. Incremental Tree Growing

while goal not yet reached do
if goal bias then
p = tree node closest to target xgoal
xtgt = xgoal

else
p = tree node selected according to weights wi

xtgt = task-space via point sampled in vicinity of p
end if
(x̄, q̄, t, Q) = final motion state of local controller
add tree node if tmin < t < tmax

end while

The resulting motion is shown in Fig. 1, right. However,
as collision avoidance is the more important objective, it is
acceptable to miss the intermediate target. The sampling-
based planning component, described in the next subsection,
will accommodate for this by globally guiding the search
process, providing new via points.

C. Sampling-based Planning

Sampling-based methods randomly grow a tree to explore
the whole search space, starting from the initial pose and
eventually reaching the targeted pose. The most prominent
method, RRT [15], biases its search towards unexplored
regions, thus rapidly exploring the whole space. However, we
prefer the family of expansive space tree algorithms (EST)
[16], because they allow to bias the search in a more fine-
grained fashion employing various heuristics. In contrast to
the RRT algorithm, EST switches the order of state sampling
and tree node selection, performing the following sequence
of operations to incrementally grow the tree:

1) randomly select a tree node p
2) sample a new state / via point xtgt in vicinity of p
3) extend p towards x using a local planner
While sampling-based methods often directly operate on

the joint space (to maximally cover the search space), the
proposed hybrid planning approach shifts planning to a low-
dimensional task-space representation and exploits the pow-
erful task-space controller described in section II-B for local
tree extensions. Hence, extensions are more often successful,
reducing the need for extensive local refinement of the search
tree. Consequently, our sampling-based approach focuses on
rapid and coarse-scale exploration of global connectivity. The
individual steps of the algorithm and the proposed sampling
heuristics are outlined in the following.

1) Node Selection. The major advantage of EST com-
pared to RRT is the possibility to determine, which tree
node should be extended next. Plaku et al. bias tree growth
towards less covered regions by more frequently choosing
tree nodes for extension which have fewer outgoing edges
[17]. Assuming a uniform distribution of edge directions
and lengths, this yields a reasonable local coverage estimate.
However, employing the nontrivial local planner, node exten-
sions more frequently follow similar paths or fail in heavily

cluttered environments, because obstacles are avoided in a
similar fashion. In this case, node selection should avoid
nodes, whose extensions were less successful.

Fortunately, local planning provides various, nontrivial
success measures for a node extension, which can be ex-
ploited for this additional biasing of the selection process.
An important indicator for the presence of obstacles close to
the path, is the accumulated magnitude of collision costs:
C =

∫
Hca. However, this measures doesn’t account for

the direction of the repelling force field. A path should be
only considered “difficult”, if the costs increase towards the
target, i.e. when the goal-direction motion ẋ and the collision
avoidance motion ẋca are counteracting. In this case the dot
product of both vectors becomes negative, leading to the
following quality criterion: Q =

∫
ẋ · ẋca.

2) State Sampling. In order to optimally cover the local
free space in the neighborhood of a tree node p, we propose
to apply a sampling strategy which reduces local dispersion
[18]. In order to focus the search towards the goal, we apply
goal biasing occasionally. To this end, the tree node closest to
the target is extended towards the goal. If the local motion
controller succeeds to reach the target, we are done. If a
node was unsuccessfully used for goal biasing before, the
next closest node is used, thus preventing the goal biasing
to use the same node over and over.

3) Local Planning. The local motion controller, used to
connect a tree node to a newly sampled via point, is limited in
duration (tmax) to avoid convergence problems in cluttered
environments. The local planner returns the reached task-
space and joint-space positions x̄ and q̄ of the initial portion
of the trajectory, which obeys both joint limit and collision
constraints. Additionally, the elapsed control time t and the
integrated path quality measure Q is returned.

Finally, the reached state is added as a new node to the
tree, if the elapsed control time is between tmin and tmax, i.e.
if a sufficient path-length could be reached and the controller
converged in time. The overall algorithm is summarized in
Alg. 1.

D. Task Motion Generation and State Representation

So far, we didn’t considered the important aspect of
task-space motion generation, i.e. computation of task-space
velocities ẋ towards the target. In the past we have employed
an algorithm to compute smooth, time-optimal trajectories
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Fig. 3. Motion planning results for a planar 4-joint manipulator moving the end effector (red dot) towards the pink-colored cross. Left and right images
show two example trajectories. Middle image illustrates the search tree, with larger and brighter nodes indicating higher exploration weights.

obeying limits on velocity, acceleration and jerk [19]. To
this end, a motion trajectory is composed from cubic splines,
partitioning the trajectory into phases of applying maximum
velocity, acceleration, or jerk as illustrated in Fig. 2. But,
the analytic approach involves the computation of zeros of a
fourth-order polynomial, which may be ill-posed in certain
conditions. Kröger solved this issue with a carefully designed
Newton-Raphson iteration algorithm [20].

However, in motion generation, especially for humanoids,
it is not important to obtain the optimal solution, but it
suffices to gain a very good one. Hence, we adopt the
dynamical-systems approach proposed in [21], [22] utilizing
a second-order attractor dynamics (spring-damper system)
driving the task-space motion towards the target attractor in
a smooth fashion obeying coarse motion limits on velocity,
acceleration and jerk:

ẍ(t) = k(xtgt(t)− x(t))− γẋ(t) , (11)

where k and γ denote the spring and damping constants re-
spectively. Due to its similarity to dynamic motion primitives
(DMP) [23], which adds an additional external force f(t) to
modulate the shape of the trajectory, it can be easily adapted
to imitation learning tasks as well.

According to Eq. 11, the overall state information, which
needs to be stored in each tree node, comprises the task-space
coordinates x, their velocities ẋ, as well as the corresponding
joint-space pose q. The latter is required to resolve the
redundancy when continuing the search from a specific
tree node. That is, although sampling and thus growing
of the search tree is performed in task-space primarily, a
corresponding secondary tree also exists in joint-space.

III. RESULTS AND DISCUSSION

In our publications [13], [24] we demonstrated that the
hybrid planning approach finds solutions more often and
with fewer tree extensions compared to joint-space methods.
However, the more complex local controller takes much
more time, such that the overall speedup is limited. Fig. 3
shows exemplary results of a planar 4-joint manipulator
moving its end effector (red dot) towards the pink-colored,
cross-marked target. The relaxed motion control scheme
results in deformed trajectories to better avoid obstacles.
Compared to a control scheme, whose avoidance capabilities

are limited to the redundant space, relaxed motion control
has a higher success rate in complicated situations and takes
fewer iterations.

The critical issue of the hybrid planning approach is
how to share the workload between the local and global
planning. Our preliminary results are encouraging, but there
is still room for further improvements by devising improved
heuristics for tree node selection and via-point sampling.
Summarizing, the shift from perfect towards near-optimal
approaches is very promising to realize real-time motion
control and planning algorithms for real-world application
in many-DoFs, redundant robots.
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Abstract—In this paper, an online path planning method is 

presented which has its application in the realm of human-robot 

interaction and cooperation. Accordingly, a special interest in 

the safety behavior and effectiveness of the system is taken. 

Results are presented and discussed with focus on these aspects. 

Thus, systems gaining greater autonomy in production without 

safety fences are feasible and enable close human-robot 

interaction. 

I. INTRODUCTION 

To achieve human-robot-cooperation in the realm of 
industrial robotics is a challenging task. In order to realize 
safety for human co-workers fences are installed or the robot 
stops its motion in case of human intrusion into the robots 
working area. Consequently, no real interaction between robot 
and human sharing space and time can be found. 

Due to some progress in the past some modern working 
cells are equipped with laser scanners for the purpose of 
foreground detection. But with such a setup no meaningful 
contribution towards scene understanding can be gained. 
Thus, no intentional and directed interaction can be achieved. 

We are conducting research on scene reconstruction and 
robot motion planning in a human centered production 
scenario in order to enable interactive and cooperative 
systems. Achieving reliable path planning under 
consideration of the human co-workers pose in the robots 
working area founds the basis for safe human-robot 
interaction. Moreover, due to human interactions the path 
planning needs to adapt to dynamic changes in the 
environment. In previous work, a framework for human-
robot-cooperation (MAROCO) was introduced incorporating 
a first approach to safe robot motion planning [1, 2]. The here 
presented work improves and expands the path planning 
module in the framework. 

The remainder of this paper is organized as follows. In 
Section 2, selected research work on path planning is 
presented.  In Section 3, a short overview of the MAROCO 
framework and relevant modules is given. In Section 4, the 
path planning method is detailed and its process sequence is 
explained. In Section 5, experimental evaluation is given and 
results are discussed. Finally, Section 6 gives a summary and 
some hints for future work are mentioned. 
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II. RELATED WORK 

Path and motion planning for robots is an important 
means for enabling autonomous robot movement in its 
environment. Different distinctions of path planning have 
developed. On the one side, there are purely reactive planners 
such as behavior based path planners [3] or potential field 
methods [4]. These approaches are based on local information 
of the environment and, thus, prone to local minima. On the 
other side, there are deliberate planners which process global 
information. These planners are based on searching through a 
graph which represents the robots configuration space [5]. In 
order to achieve fast online planning, there is an offline phase 
in which the search-graph structure is computed. 

In [6], a deliberate path planning method based on 
Dynamic Roadmaps is presented [7]. The system is 
implemented for a robot arm on a mobile platform which is 
used in a service oriented scenario. Thus, movement of the 
robot arm needs to react on changes in the environment and 
plan its path accordingly. The presented system uses a time-
of-flight sensor to detect obstacles and update a voxel model 
of the environment. This is used to update the search graph. 
The approach achieves planning times of less than 100 ms 
and is argued to be faster than human reaction times. 

In [8], a hybrid method of reactive and deliberate planners 
is presented. A roadmap based method is used to determine a 
path before motion execution. During robot motion the 
environment model is updated with changed geometric data. 
In order to avoid collisions the path is adapted based on local 
information. If the change of the path in the adaptation step is 
too big a complete re-planning is invoked. The purpose of 
path adaption is to reduce the number of planner invocations 
and, thus, increase the overall system performance. Presented 
results were obtained from simulation only and demonstrate 
the validity of the approach. 

A different approach to accelerate system performance is 
followed in [9] by using GPU-based parallel algorithms for 
collision checking. This allows evaluating multiple 
configurations simultaneously and performing efficient 
collision queries. Similar to [6], collision free paths can be 
computed in less than 100 ms. 

III. THE MAROCO FRAMEWORK 

In order to realize a comprehensive approach to cognitive 
robotics and enabling human-robot interaction the MAROCO 
framework was implemented. Sensing of the robots working 
area is accomplished by a time-of-flight bases camera. Due to 
occlusion reasons it is mounted at the ceiling, thus, allowing 
handling of objects and arbitrary robot motion. 

Based on the depth information of the working area the 
human kinematics can be reconstructed without the need of 
marker [1]. The reconstructed model of the human co-worker 
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is embedded into the overall scene of the working cell (see 
Fig. 1). 

  
Figure 1.  Human kinematics reconstruction based on depth information 

from time-of-flight camera (left) and the overall scene (right). 

The information about the human pose and its relation 
towards the robots is used for risk assessment and estimation. 
Due to the fact that safety is a crucial feature in productive 
interaction scenarios, different methods for risk estimation 
were implemented and evaluated [10]. 

Based on the risk assessment different strategies for risk 
minimization are feasible. In contrast to sole robot velocity 
adjustments actual re-planning and active collision avoidance 
is more challenging and rewarding. As shown in Section 5, a 
robots’ capability to maneuver around obstacles increases 
throughput and productivity. 

IV. METHOD DESCRIPTION 

The path planning method is based on the idea of 
Dynamic Roadmaps and, thus, consists of two phases. An 
offline phase captures the configuration space and maps it 
onto a graph structure. The online phase is used to do the 
actual planning through graph updating and searching. 

A.  The Offline Phase 

In the research of the last decade, especially randomized 
sampling based techniques to capture the free configurations 
space (CSpace) have gained popularity. These techniques 
achieve improved performance while not striving for 
optimality [5].  

In our work, the robots’ environment can be dynamic due 
to human interaction. Thus, the free CSpace is not 
distinguishable from the overall CSpace a-priori. 
Consequently, we implemented a systematic and 
deterministic sampling method which intersperses the CSpace 
in regular intervals. Moreover, virtual fences can be defined 
to restrict the work space of the robot, thus, accounting for 
walls, other stationary machinery or adapt the work space 
depending on task and interaction scenario (see Fig. 2). 

Based on requirements defined in EN ISO 10218-1 
distance between robot and human and resulting risk have to 
be assessed and need to influence the robots’ velocity. In 
order to enforce these requirements early in the planning 
process, a predefined velocity distribution over the work 
space can be set. Doing so, safety of virtual fences can be 
enforced. Also, if the interaction space of human and robot is 
known a-priori, the robots’ velocity in that space can be 
reduced and defined in the offline phase. 

  

Figure 2.  Virtual fences for adapting work space to task. 

The sampled configurations are used as nodes in a search 
graph. Each node is augmented with its predefined maximal 
velocity if any is given. Each node is then connected with its k 
nearest neighbors.  

B. The Online Phase 

The Dynamic Roadmap method as presented in [7] 
defines a mapping from work space to configurations in the 
roadmap. This mapping is based on a discretization of the 
work space into cells. Each cell is linked to the corresponding 
nodes and edges in the roadmap. During run-time occupancy 
of the cells are tested and linked nodes are invalidated. 

This procedure has two drawbacks that our approach 
avoids: 

 All configurations linked to an occupied cell are 
invalidated. This is also done, if only a very little 
proportion of the cell is actually occupied. This 
does also depend on cell size, thus resolution. 

 Invalidation is only dependent on actual physical 
obstacles and their spatial circumference. 
Situation dependent risk estimations cannot be 
respected. 

The human kinematics reconstruction allows us to 
approximate the human pose geometrically through a sphere 
model, thus, representing the human kinematics through a 
dense set of spheres. Such a sphere model is also defined for 
the robot. This enables fast distance computations and, thus, 
collision checking (see Fig. 3). Moreover, we use a two-
threaded fuzzy logic system for risk estimation of a situation 
based on the humans head pose and its relations to the robot. 

 
Figure 3.  Fast distance computations with sphere models. 

Consequently, the update and invalidation of the graph 
nodes is done during search time. For defining a configuration 
as colliding two criteria can be used: Distance human to robot 
or distance in combination with the risk assessment. Our 
reasoning about risk is that if the human co-worker is seeing 
what actions the robot is performing it is less risky than if the 
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human is turned around and is distracted. In the latter case, 
the human might take a step back and walk unintentionally 
into the robot. Accordingly, greater distances need to be 
enforced in such a case. Thus, the combined criterion allows 
for better situation dependent planning and is used in the 
online phase. 

Another important aspect that influences the search time 
and path quality is the used heuristic function during the A*-
search. In contrast to [6] and [7] which use workspace 
metrics, our approach uses a configuration space metric, 
namely Euclidian distance. Due to the fact that different 
configurations can reach the same pose in work space a 
simple work space metric based on tool center point (TCP) 
positions is unsuitable. Thus, work space metrics can be 
devised that consider a set of reference points on the robot 
surface additionally to the TCP [6, 7]. We argue that the path 
of the robot is captured best in CSpace because shorter 
angular distances result in more efficient paths. Thus, the 
Euclidian metric is applied directly to the configurations 
avoiding detour computations through work space metrics. 

The risk assessment for a given configuration and a 
human pose can also be used to guide the robots velocity. As 
stated above, it is required by normative regulations to adapt 
the robots velocity due to a humans’ presence. Thus, the risk 
value yields a safety value in the interval (0, 1], with 0 being 
defined as colliding and 1 as safe. This safety value can be 
mapped onto the interval [İ, 1] which can be regarded as 
maximal allowable velocity for robot movement with İ being 
a minimal velocity so that the robot will move with a safe 
velocity in risky but non-colliding configurations. 

The maximal allowable velocity value can be used two-
fold: Firstly, it augments the resulting path so that the robot 
motion can comply with these parameters. Secondly, the node 
evaluation function f, given in (1), is adapted to prefer faster 
paths over slower ones by modification of function g which is 
a measure for the distance from starting configuration to 
current node i. The parameter sk resembles the reciprocal 
maximal allowable velocity for node k. 

f(vi) = g(vi) + h(vi)

g(vi) = sk+1 vk-vk+1 k = 0, …, i-1)

This modification increases the g-value for a node if it has 
a safety value smaller than 1. Moreover, the heuristic function 
is unchanged and does not account for future possible slower 
path traversal in order to be admissible and optimistic. This 
divergence of functions g and h leads to more expanded nodes 
and, thus, longer search times but generally better paths as is 
shown in Section 5. 

C. Reactivity in Changing Environments 

In order to react on a moving human co-worker the system 
has to check for imminent collisions along its planned path. It 
is not efficient to compute collision detections for the whole 
path during robot motion because possible collision at the end 
of the path might not actually occur when the robot reaches 
these configurations. Thus, for determining possible collisions 
a limited look-ahead is used to check a set of close-future 
configurations. These are determined by extrapolation along 
the planned path for a certain distance and computing 
distances and risk assessment. In order to cope with 

discretization of the look-ahead a safety clearance for each 
configuration is defined in which no obstacle is allowed to 
appear. 

If the look-ahead detects an imminent collision during 
robot motion the robot is stopped and a path re-planning is 
invoked. The current robot configuration is used as starting 
configuration whereas the goal is kept unchanged. As soon as 
the re-planning has found a suitable path the robot continues 
its motion. 

In contrast to our previous work, path re-planning is not 
preemptive but uses its own thread for computations. This 
change is necessary due to further developments of additional 
functionality in the framework. More modules require 
processing time, thus, continued use of the preemptive 
approach would require smaller time slices and result in usage 
of more processing cycles for path finding. Consequently, the 
dynamics of the work space cannot be captured by the 
planning module and the system would seem not as 
responsive. 

During path search the core MAROCO modules are 
processed with a high priority, thus, allowing timely 
processing of the sensor data and safe stopping of the robot. 

V. EXPERIMENTAL RESULTS 

For experimental analysis different scenarios were 
examined. Specifically different approaches to node 
evaluation during A* search were tested. These evaluation 
methods are: 

 Using Euclidian distance for g(vi) (Type 1), 

 Using modified g-function (Type 2), 

 Instead of defining a safety value of 0 to be 
colliding using a value İ > 0 (Type 3). 

Moreover, runtime tests were conducted without any re-
planning in order to verify the effectiveness of planning in 
contrast to stopping the robot and waiting for obstacles to 
disappear. 

A sequence of a human moving in the work space was 
recorded. During evaluation this sequence was played back in 
a loop and used as sensor input. The sequence consists of 
2000 frames in which the human moved freely in the sensor 
area. The motion consisted of linear and circular paths with 
habitual and different walking velocities. In total 9000 frames 
were analyzed for each node evaluation method.  

During evaluation different parameters were recorded (see 
Table I). In order to capture the effectiveness the number of 
finished paths and canceled paths is of interest. Canceled 
paths are those that are interrupted before reaching the goal 
due to invocation of re-planning. The big discrepancy of the 
number of canceled paths of type 1 and the others is mainly 
caused by paths that are not even started because the planning  
returned a colliding look-ahead already in the frame after 
planning. Thus, the re-planned path was valid in its instance 
but due to human motion was invalidated the next moment. 
This is caused by planning very close to the risk-safety 
boundary which might change drastically if the human is 
turning around. It resembles the fastest way around the 
obstacle towards the goal but is not concerned with possible 
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future risk increase. The number of finished paths, on the 
other hand, counts the times the robot reached its goal. 

TABLE I.  EVALUATION RESULTS 

Evaluation method type Type 1 Type 2 Type 3 

# finished paths 44 46 42 

# canceled paths 109 24 15 

# searches total 433 316 675 

# successful searches 151 70 57 

# unsucessful searches 282 246 618 

Avg. path length 17.7 19.1 18.5 

Avg. time for successful 

search [ms] 
27.33 233.68 62.63 

Avg. time for unsuccessful 
search [ms] 

294.89 371.44 227.31 

Avg. time search total [ms] 201.58 340.92 213.41 

 

In the case that no path re-planning was used 41 finished 
paths were recorded. As can be seen in Table 1, all versions 
of path re-planning were more effective. In case of type 3 the 
difference is only one more finished path. This is due to the 
recorded sequence in which the human was almost always in 
motion, thus, not blocking the robots path for long. For such 
dynamic and risk dependent scenarios new benchmarks need 
to be defined in order to truly assess effectiveness. The here 
presented evaluations give a starting point and help for 
improving developed algorithms. 

Overall, the evaluation method considering maximal 
allowable velocity (type 2) achieves most finished paths and 
has less than a quarter of canceled paths compared to basic 
Euclidian node evaluation (type 1). In comparison of needed 
search time type 2 is about 8 times slower for successful 
searches than type 1. In average over all searches the factor 
decreases noticeably to approximately 1.7. The higher 
effectiveness of type 2 is contrasted by the higher timely 
requirements. Type 1 also requires more searches in total due 
to more canceled paths, thus, reducing effectiveness.  

In comparison with [6] and [7], it is notable that our 
runtimes are slower by a factor of three for type 1 planning. 
This is due to required forward kinematics computations in 
order to assess the robot and human pose dependent risk 
value. Thus, reactivity is slower but greater safety is achieved 
which in turn decreases the need for many re-planning 
invocations, especially for type 2 planning. Moreover, as 
demonstrated in [9], GPU accelerated computation can help 
improving runtimes. This might also be applicable to our 
approach. 

In Figure 4, the correlation between the number of 
expanded nodes and the needed runtime for re-planning is 
shown for each node evaluation method. It can be seen that 
for all types there is a clear linear correlation between 
expanded nodes and required search time. Due to the 
properties of the A* algorithm this is to be expected. 

For type 1 there is a clear distinction and clustering. 
Searches that expand more than 1000 nodes return 
unsuccessful. A similar cluster of unsuccessful searches can 

be seen for type 2 but successful searches are stretched over 
the scale and even a high number of expanded nodes might 
lead to a found path. This behavior is caused by striving for 
faster paths rather than shorter ones. In cases of narrow 
passages in which the risk is high a faster detour is searched. 
But, instead of failing, this passage can be slowly traversed. 
Type 3 has overall different characteristics. In order for a 
search to fail comparably few nodes need to be expanded. 
This is due to the increase requirement for safety evaluation 
of a node. Narrower passages get blocked and dead ends are 
reached. 

 

 

 
Figure 4.  Distributions of runtime over number of expanded nodes for 

successful and unsuccessful searches. Runtime is given in [ms]. Top: Type 

1. Center: Type 2. Bottom: Type 3. 

Different planned paths for type 1 and 2 are given in 
Figure 5. The paths are symbolized by the trajectories of the 
TCP. The top left image shows the original planned path with 
the human standing far away and watching the robot. An 
indication of the overall risk assessment is symbolized by the 
color of the human model. Thus, green means safe and red 
shows a high risk value. The color can vary between these 
two poles. 

The human poses depicted in the top right and bottom left 
images of Figure 5 are similar but the resulted re-planned 
paths differ noticeably. The images show the outcomes of 
type 2 and type 1 planning respectively. Type 2 planning 
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keeps a greater safety margin to the human, whereas the type 
1 planning finds a shorter path. The resulting higher risk 
assessment of the type 1 result can be seen due to higher red 
values of the human model. A short step backwards of the 
human would result in a new re-plan invocation. 

 

 
Figure 5.  Examples for re-planned paths. Top left: Original plan. Top right: 

Re-planning type 2. Bottom row: Type 1 re-plans for different situations. 

As can be seen in the bottom right image, the human has 
to move rather close to the original path in order to provoke 
similar results as type 2 planning (see Fig. 5). Consequently, 
searching for paths utilizing higher robot velocity results in 
safer paths. 

VI. SUMMARY AND FUTURE WORK 

In this work, we demonstrated and evaluated a reactive 
online path planning method in conjunction with safe path 
traversal. Imminent collisions and high-risk situations are 
detected and path re-planning is invoked accordingly. 

For path planning the Dynamic Roadmap approach was 
adapted in order to cope with situation dependent risk 
assessment. Instead of invalidating sets of configurations that 
are linked to an occupied cell in work space each expanded 
node of the search graph is evaluated separately. This leads to 
longer processing time compared to [6, 7] but increases safety 
margins and allows situational robot velocity specification. 

For experimental analysis different node evaluation 
methods were implemented and compared. All methods 
enabled safe robot motion but achieved differing 
effectiveness. Even though requiring more processing time 
during search the method preferring faster paths over slower 
ones achieved best effectiveness with most finished path 
traversals and only a few canceled ones. 

The presented method allows for effective human co-
worker avoidance. In shared work spaces this is a necessity 
and results in higher productivity and safety at the same time. 
In contact based cooperative scenarios this approach needs 
adaption in order to allow intentional “collisions”, hence 
robot guidance or joint object manipulation. Nevertheless, 
safety is of utmost concern and has to be guaranteed during 
human interaction. 

Reducing the required processing time during search is a 
further point of improvement. Using acceleration techniques 
provided by GPU processing might lead to better 
performances and need further investigation. 
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A Synergetic High-level/Reactive Planning Framework with Application

to Human-Assisted Navigation

Antonio Franchi, Carlo Masone and Paolo Robuffo Giordano

Abstract— In this work we present a novel framework for the

systematic integration of high-level/mission schedulers, middle-

level/cognitive-enabled online-planners and low-level/reactive

trajectory modifiers. The approach does not rely on a particular

parametrization of the trajectory and assumes a basic environ-

ment representation. As an application, the online capabilities

of the method can be used to let a mobile robot cooperate with a

human taking the role of the middle-level planner. In that case

we also describe a rigorous way to bilaterally couple the human

and the reactive planner in order to provide an immersive hap-

tic feeling of the planner state. Hardware/Human in-the-loop

simulations, with a quadrotor UAV used as robotic platform and

a real haptic instrument, are provided as validating showcase

of the presented theoretical framework.

I. INTRODUCTION

Combination of low-level controllers with high-
level/sophisticated planning abilities represents one of
the crucial issues to enable complex decision making in
real-world unstructured scenarios. Furthermore, the presence
of a systematic framework to combine these two aspects
may also result helpful in many task requiring human-robot
interaction and cooperation, e.g., in order to optimally
balance the human commitments and robot autonomy.

In these notes we focus on the very common scenario
where a mobile robot is tasked to navigate in an environment
in order to accomplish some given mission, e.g., exploration,
surveillance, monitoring, search-and-rescue, good transporta-
tion, mobile-networking, etc.. Some prior knowledge on the
environment may be given (e.g., the environment size and
a rough map that has been retrieved with a preliminary ex-
ploration). The environment is also populated with obstacles
and points-of-interests that can only be detected when the
robot is sufficiently close (e.g., victims, goods to be loaded,
charging docks, stationary antennas, etc.). The planning step
is then divided in three phases: mission scheduling, online
middle-level planning, and reactive trajectory modifier. Our
deformation differs from other well known approaches that
apply artificial forces to a sequence of configurations [1], [2],
or define trajectory modifications as input functions along
the admissible directions of motion [3], because it does not
arbitrarily change the path but only some desired geometric
properties.

We also propose a systematic way to incorporate a human
assistant as online middle-level planner, in order to exploit
his/her advanced cognitive capabilities. In the case of a
human in-the-loop we propose a haptic algorithm that feeds

A. Franchi, C. Masone, and P. Robuffo Giordano are with
the Max Planck Institute for Biological Cybernetics, Spemannstraße
38, 72076 Tübingen, Germany {antonio.franchi,carlo.masone,
prg}@tuebingen.mpg.de.

back to the human a force cue informative of the global
deformation acting on the desired path rather than on a
local mismatch between commanded and executed posi-
tion/velocity, as in all the previous works in our knowledge,
see, e.g., [4], [5], [6], [7], [8].

Summarizing, the main contributions of our framework
are: i) a systematic integration of three different motion
planning layers that does not rely on a particular trajec-
tory parametrization and uses a basic representation of the
surrounding environment ii) the possibility of seamlessly
applying this framework for including, online and in real-
time, a human operator in the planning loop in order to
exploit her/his superior cognitive skills, iii) the design of
a general force-cue paradigm that closes the loop between
the automatic part of the motion planner and the human
assistant (when present), and iv) the fact the the proposed
force cue is informative of the global deformation of the
desired path rather than of the mismatch between direct mo-
tion commands and their execution, as in previous bilateral
teleoperation frameworks.

This framework is the generalization of the ideas presented
in [9] where only the case of human operators and persistent
trajectories are considered. In these notes we also present
additiona plots from new simulation results.

II. SYNERGETIC TRAJECTORY PLANNING

The proposed planning framework is constituted by three
main sub-systems: i) a high-level task scheduler, ii) a middle-
level modifier, iii) a reactive modifier, as depicted in Fig. 1. In
the case that the middle-level modifier duties are performed
by a human assistant (as described in Sec. III) then an ad-
ditional sub-system is represented by the bilateral-controller
that provides the assistant with a suitable haptic feedback.

The three fundamental blocks operate in cascade. The
task scheduler (TS) periodically generates an initial reference
path that is intended valid for a given time horizon and it
is based on past information. For example, it can be an
exploration algorithm that plans the next move based on
the current partial map or a coverage method that switches
between predefined curve patterns. The middle-level modifier
(MM) builds upon the initial reference path in order to
generate online a time-varying reference trajectory. The
underlying idea is that the MM comprises a sophisticated
algorithm (or even a human assistant) that is able to promptly
take into account new pieces of information gathered by the
mobile robot and refine in real-time the reference motion
by resorting on some sophisticated/cognitive capabilities.
Finally the reactive modifier (RM) goal is to generate online

Workshop on Robot Motion Planning: 
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2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012
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Fig. 1: Block diagram of the planning and control framework, with highlighted the high-level task scheduler (TS), the middle-level modifier
(MM), and the low-level reactive modifier (RM).

the actually tracked trajectory for the robot motion controller
in order to meet the following specifications:

1) ensuring feasibility of the motion, given the robot
kinematic and dynamic constraints,

2) let the tracked trajectory be as much as possible similar
to the reference trajectory,

3) ensure obstacle avoidance,
4) pass close to the points-of-interest that are located in

the vicinity of the reference trajectory.
The reference trajectory, generated online by the MM, is

specified as a geometric path

γ : Rn × [0, Lh] → Rd, s.t. (xh, sh) �→ γ(xh, sh)

(where xh ∈ Rn is a vector of shape parameters uniquely
defining the curve, Lh is the curve length, and sh is the arc
length of the curve) together with a timing law sh(t) which
ultimately determines how the robot should travel the path.

At a certain initial time t0 the TS provides the initial
reference path to the MM in the form of an initial set of
geometric parameters x0

h for the reference trajectory, Then
the MM sets xh(t0) = x0

h and sh = 0 and from that moment
the MM is free to modify the reference trajectory by acting
on ẋh and ṡh. The current reference trajectory stays alive
until the TS provides a new initial reference path to the MM.
This event brings to a reset of the reference trajectory to the
new initial reference path, and so on.

The number of parameters n and their kind depends on
the specific representation used for γ and in general a
larger n results in a higher flexibility of the geometric path.
Nevertheless, managing the total number n of parameters
required to cope with a typical unstructured environment
may demand a too high computational load on the cognitive-
planning side (e.g., it may exceed the number of quantities
that a human operator can reasonably control at once).

For this reason we consider a vector y(xh) =
(y1(xh) . . . ym(xh))

T ∈ Rm, m ≤ n, defining the m
degrees of freedom assigned to the middle-level modifier.
The time variation of y is given by

ẏ =

�
∂y1
∂xh

T

· · · ∂ym
∂xh

T
�T

ẋh =
∂y

∂xh
ẋh = G(xh)ẋh,

(1)

where matrix G(xh) ∈ Rm×n is assumed to have full
row-rank so that the m dofs controlled by the MM are
independent.

The action of the MM on the reference trajectory is then
obtained by means of the following dynamical system

ṡh = us (2a)
ẋh = G† (xh)u, (2b)

where us ∈ R and u ∈ Rm represent the actual MM
commands (whose detailed expression in the case of a human
operator is described in Sec. III), and G† is the pseudo-
inverse of matrix G.

A. Pure-reactive Dynamics of the Tracked Trajectory

The environment is considered populated by a set of ob-
stacles, described by the vector of obstacle points o =
(o1 . . .ono) ∈ Rd×no , and a set of regions of interest, de-
scribed by the vector of points of interest r = (r1 . . . rnr ) ∈
Rd×nr . Given the reference trajectory parameters (sh,xh)
and the environment (o, r), the reactive modifier generates
the tracked trajectory p(t) as dictated by the following
dynamical system:

ṡ = g (x, s, ṡh) (3a)
ẋ = f (x, s,xh, ẋh,o, r) (3b)
p = γ (x, s) , (3c)

where x ∈ Rn and s ∈ [0, L] are the shape parameters
and the arc length of the tracked trajectory, respectively, and
the initial conditions are of the system as set as x(t0) =
xh(t0) = x0

h, and s(t0) = 0.
The arc length map (3a) has the following form

g(x, s, ṡh) = g1(x, s, ṡh)ṡh, (4)

where g1 ∈ [0, 1] is designed so as to cope with the robot
motion capabilities. In particular, g1 = 1 if the robot can
travel along the path at the desired speed ṡh, and g1 → 0
(thus, towards a full stop) whenever the speed ṡh becomes
too large for the actuation capabilities of the robot (e.g.,
because of a too large curvature or a low energy level for
the robot batteries).
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Concerning the vector field f , we first show how to design
it in order to meet the first specification, i.e., feasibility. In
particular we want to prevent that at any time the geometric
properties of γ(x, s) are directly influenced by the variation
ẋ given by (3b) This is important to ease the action of the
robot trajectory tracker which expects presence of some local
regularity properties of the curve being tracked1.

Local geometric properties of a curve are characterized by
the k-th derivatives w.r.t. the arc length s, i.e.,

p(k)(x, s) = γ(k)(x, s) =
∂kγ

∂sk
(x, s), k ∈ N0

where the operator ·(k) indicates the k-th geometric deriva-
tive. By applying the chain rule, the variation of p(k) due to
changes of x and s over time is given by

d

dt

�
p(k)(x, s)

�
=

∂γ(k)

∂x

����
(x,s)

ẋ+
∂γ(k)

∂s

����
(x,s)

ṡ. (5)

Stacking eq. (5) for the first k derivatives then yields

Γ̇ 0,k(x, s) = J(x, s)ẋ+ Γ 1,k+1(x, s)ṡ. (6)

where Γ i,j = [γ(i)T . . .γ(j)T ]T ∈ R2(j−i+1) and J ∈
R2(k+1)×n. Equation (6) shows how the geometric properties
of the curve γ at some (x, s) depend on two contributions:
the first is due to the parameter change ẋ and the second to
the longitudinal speed ṡ. The feasibility requirement on f
can then be interpreted as imposing that the first term in (6)
is zero when evaluated at the current (x, s). Therefore, the
design of the vector field f must ensure that

J(x(t), s(t))ẋ = 0. (7)

Assuming matrix J has a non-empy null-space, an infinity
of possible ẋ ∈ N (J) would meet the constraint. To this
end, let J†(x, s) represent the pseudo-inverse of J(x, s),
and N(x, s) ∈ Rn×n a projector matrix spanning the null
space N (J), i.e., such that JN = 0. We then design the
vector field f to have the following form2

f (x, s,xh, ẋh,o, r) = N(x, s)f1 (x,xh, ẋh,o, r) . (8)

Assuming that matrix J has full row-rank, a well-known
choice for the projector operator is N = (I − J†J).

In order to meet the remaining three specifications, we
then design f1 in (8) as the composition of four terms:

f1 = fh(x,xh, ẋh) + fo(x,o) + fr(x, r) + f i(x). (9)

The first term implements a feedforward/proportional action

fh(x,xh, ẋh) = ẋh + kh(xh − x), (10)

with kh > 0, in order to steer x towards the reference
xh; fo(x,o) is a vector field that moves γ away from the

1The ability to track a sufficiently smooth trajectory is a common property
of basically all mobile robots within the scope of this work. This property
holds, among the others for all those differentially flat systems [10] whose
flat output includes a Cartesian point, or, equivalently, possessing a point
that can be linearized through a dynamical feedback [11].

2We note that this approach could be seen as an extension of the classical
Task-Priority framework developed for robot manipulators and recast to our
particular needs, see [12] for more details.

obstacles o; fr(x, r) is a vector field that attracts γ towards
the points of interest r; and f i(x) is an additional vector
field that is left free to the engineer in order to implement
some additional internal properties of the curve that may be
of interest, e.g., internal elasticity, stiffness, or viscosity.

With regard to fo, each obstacle oi, i = 1, . . . , no, im-
plements a strictly monotonic and scalar potential ϕoi :
R0 → R+ such that, for a generic point γ(x, s) on the path,
ϕoi → ∞ when �γ(x, s) − oi� → 0, ϕoi → 0 smoothly
when �γ(x, s) − oi� → Roi and ϕoi ≡ 0 when Roi > 0
where Roi > 0 defines the region of influence of the obstacle.
The action of the anti-gradient vector field of ϕoi on the point
γ(x, s) is

fp
oi(x, s,oi) = −∂ϕ(�γ(x, s)− oi�)

∂γ(x, s)
. (11)

The overall action exerted on the curve by a single obstacle
and projected on the shape parameters space is

foi(x,oi) =

�

γ

∂γ

∂x

����
†

(x,s)

fp
oi(x, s,oi)ds, (12)

where the previous considerations on the existence of the
pseudo-inverse still hold. Finally, the total action of the
obstacles is just the sum over all the elements in o:

fo =
no�

i=1

foi(x,oi), (13)

We note that, from a practical standpoint, the analytical
expression of (11) can be hard to determine, so that a
numerical evaluation of the integral may be needed.

By resorting to similar arguments, we define an attractive
vector field fri(x, ri) for each point of interest ri, and sum
each contribution in order to obtain

fr =
nr�

i=1

fri(x, ri). (14)

B. Obstacle-Crossing Dynamics for the Tracked Trajectory
One drawback of using artificial potentials whose intensity
becomes infinite as the distance to the obstacles goes to
zero is that it does not allow the tracked trajectory to cross
over an obstacle even if this could result in a smaller error
norm e(x,xh) = �xh−x�. This limitation is a well known
problem in the reactive planning literature and it has been
tackled in different ways. For instance, in the elastic strip
framework [2] the planner is allowed to temporarily suspend
the internal forces keeping two waypoints together and then,
when the obstacle is passed, restore them to rejoin the two
trajectory branches. However, this formulation is limited to
paths defined as a sequences of configurations and it does
not guarantee that the two disjoint branches would actually
cross to the other side of the obstacle.

Here we propose a procedure that, given an obstacle
point oi on one side of γ(x, s), autonomously generates an
alternative set of shape parameters xoi ∈ Rn such that oi is
on the other side of γ(xoi, s). The alternative path γ(xoi, s)
is initialized and generated when oi induces a big enough
deformation on γ(x, s). Introducing a threshold F > 0, this
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Fig. 2: Block diagram of the hybrid obstacle-crossing dynamics for
the tracked trajectory.

condition can be expressed in terms of the repulsive force
fp
oi in (11) as

max
s∈[0,L]

�fp
oi(x, s,oi)� ≥ F. (15)

Note that, by definition, the maximum value of �fp
oi� is

obtained on the closest point to the obstacle, let this be
γ(x, s̄), which can be computed by solving the problem

s̄ = min
s∈[0,L]

�γ(x, s)− oi�. (16)

Assume that condition (15) becomes true at time instant t0,
the alternative path is generated by letting the alternative
parameters follow a dynamical system of the form:

�
xoi(t0) = x(t0)

ẋoi = f c(xoi,x, s, s̄, ŝ,oi).
(17)

In order to define f c ∈ Rn, we first need to introduce
another artificial vector field fp

c ∈ Rd, i.e., acting in the
Cartesian space. The role of fp

c ∈ Rd is to apply an action
that leads a single given point γ(xoi, ŝ) of the alternative
path to the other side of the obstacle. Formally, fp

c is
designed as

fp
c (xoi,x, s, s̄, ŝ,oi) =

dψ(�γ(xoi, s)− oi�)
d�γ(xoi, s)− oi�

n (18)

where ψ is a strictly increasing artificial potential and n =
oi−γ(x,s̄)

�oi−γ(x,s̄)� .
In fact, the point γ(xoi, ŝ) where the vector fp

c is applied
is given by the intersection of the geometric path γ(xoi, s)
with the line connecting oi with γ(x, s̄). With the same
arguments used before, the desired velocity vector fp

c for
the point γ(xoi, ŝ) is realized by a velocity vector in the
space of xoi using a pseudo-inversion

f c(xoi,x, s, s̄, ŝ,oi) =
∂γ

∂x

����
†

(xoi,ŝ)

fp
c . (19)

When the crossing is completed and γ(xoi, ŝ) is suffi-
ciently far from the obstacle point oi, then the dynamical
evolution of the alternative shape parameters xoi switches to
the normal reactive behavior

ẋoi = f (xoi, s,xh, ẋh,o, r) . (20)

At this point, the alternative collision free path γ(xoi, s)
is fully generated. If at some instant ts it results that

Fig. 3: CM: Block diagram of the bilateral controller.

e(xoi,xh) < e(x,xh), then the alternative path and the
tracked one are exchanged, i.e.,

�
xoi(ts) = x(ts)

x(ts) = xoi(ts).
(21)

However, the switch is allowed only if γ(x, s) � γ(xoi, s)
to avoid discontinuities in the tracked trajectory for the robot.

To complete the procedure, if the obstacle
oi gets sufficiently distant from γ(x, s), i.e. if
maxs∈[0,L] �fp

oi(x, s,oi)� < µF with 0 < µ < 1,
then γ(xoi, s) is dropped. A block representation of the
overall method is depicted in Fig. 2.

The generalization of this procedure to multiple obstacles
is straightforward. An alternative path is generated for every
obstacle that is applying a strong enough force on the current
path, and whenever the current path is switched to another
one, all the other alternatives are also reset. This method
is not complete at every time instant, however, sequential
switches allow to virtually extend the search to large part of
the shape-parameter space while still keeping the problem
tractable, being the number of path at every instant linear
w.r.t. the number of obstacles.

III. PARADIGMATIC APPLICATION TO CLOSED-LOOP
HUMAN-ROBOT COOPERATION

In this section we propose a systematic way to let a human
assistant/operator act as MM, thus enabling a fruitful human-
robot cooperation. In this case inputs (us,u) ∈ Rm+1 are
provided by making use of a (m+ 1)-DOF force-feedback
device (the master side). The device is modeled as a generic
mechanical system whose configuration vector is denoted
with qM ∈ Rm+1, see Fig. 3. The inputs (us,u) are
computed as �

us

u

�
= KRqM , (22)

where KR ∈ Rm+1×m+1 is a positive definite diagonal
matrix of scaling factors.

In order to increase the operator situational awareness the
force-feedback τM is used to convey information about:
i) how well the actual speed ṡ is tracking ṡh, i.e., the one
commanded by the human via us, and ii) how well the whole
tracked path γ(x) is in agreement with the reference path
γ(xh) commanded by the human via u. Therefore, as a
haptic cue we consider the linear combination of two errors
in a ‘PD-like’ fashion:

eγ = eẏ + kyey. (23)
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(a) (b)

Fig. 4: simulation setup for human/hardware in the loop simulations.
a): haptic device used to command the task path; b): simulation
environment with planned paths.

Here, eẏ represents the ‘velocity error’ part of (23) and is
related to the difference between the commanded (ṡh, ẋh)
and the executed (ṡ, ẋ), i.e., exploiting (1),

eẏ =

�
ṡh − ṡ

G(xh)ẋh −G(x)ẋ

�
= KRqM −

�
ṡ

G(x)ẋ

�
.

(24)

The second term kyey in (23) represents the ‘position error’
term and is associated to the mismatch between the desired
shape xh and its actual implementation x, i.e.,

ey =

�
0

G(x) (xh − x)

�
. (25)

The use of a force feedback based on the entire planned
motion is a new feature of our approach w.r.t. to the more
classical haptic-cue algorithms where only the local mis-
match between the current robot velocity and the commanded
one is used, instead.

The master control is then implemented as

τM = −BM q̇M −KMqM −K∗
Meγ (26)

where BM is a positive definite damping matrix used to
stabilize the device, KM is a diagonal non-negative matrix
used to provide a perception of the distance from the zero-
commanded velocity, and K∗

M a diagonal positive definite
matrix of gains. The resulting scheme is depicted in Fig. 3.

As in all bilateral teleoperation applications, presence
of the force feedback τM may cause unstable behaviors
of the haptic interface because of non-modeled dynamics,
communication delays and packet losses, etc. In order to
guarantee stability despite all these shortcomings, we make
use of the passive set-position modulation (PSPM) approach,
a very general and flexible framework for guaranteeing
stability (passivity) of the master side and of the closed-loop
system [13].

A. Human/Hardware-in-the-loop Simulations
We performed several hardware/human in-the-loop simu-
lations in order to test the proposed framework and its
application to the bilateral human/robot cooperation case.
The considered physically-simulated robot is a standard
quadrotor UAV (see Fig. 4a), the path γ(x, s) is parametrized
as a fifth-order planar B-spline. We also asked the TS to
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Fig. 5: Simulation comparing 1) the case of no null space projection
(solid lines) and 2) when ẋ is projected in the null space of J =
∂γ/∂x|(x,s) (dashed lines). The red curve in (a) is the tracked
trajectory while the blue one is the reference one. The red arrow
represents the desired speed. In all the other plots blue and red
stand for the x and y component of the signal, respectively.

produce a closed initial path, as described in [9], in order to
show the applicability of the proposed framework to typical
monitoring/surveillance scenarios where a repetitive motion
is often required. The commands (us,u) are provided by the
assistant through an Omega.6 haptic device (Fig. 4b) with 3
actuated degrees of freedom. A video of the simulations is
attached.

In the first simulation we evaluate the effects introduced by
the null space projector in (8) to keep the current position
of the tracked trajectory invariant to ẋ. The MM applies
a planar sinusoidal translation to the reference trajectory
(Fig. 5b) in an obstacle-free environment. The case with the
null-space projector (Fig. 5a-2) is compared against the case
without it (Fig. 5a-1). Figure 5c shows the tracking error
γ(x, s) − w, where w ∈ R2 is the planar position of the
UAV. When the null space projection is applied (solid lines)
the tracking error is visibly smaller than when no projection
is used (dashed lines). This confirms the beneficial effects
of keeping the local geometric properties of the curve in
the point to be tracked. On the other hand, the deformation
introduced by the projector N (see Fig. 5a-2) causes a
mismatch between x and the reference xh, even in free
space. This effect is reflected on the force feedback τM

(Fig. 5d), that becomes informative of the inertia of the path
to these local changes.

The second simulation offers an example of how the
MM can change the reference trajectory using different
maps G(xh) such as global-translation local-translation and
expansion. The MM commands are plotted in Fig. 6a,
where vertical black lines indicate the change to a different
command map, while the force feedback τM is depicted in
Fig. 6b. Notice how the force feedback (Fig. 6b) when using
the partial translation map (from t = 25 s to t = 38 s) is not
null only for a short period. This is due to the fact that the
map produces a local modification of the path, therefore the
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Fig. 6: Second simulation showing how the changes in the reference
trajectory (blue curve) affect the tracked trajectory (red curve), and
generates a haptic feedback to the human assistant.

null space projection produces a mismatch only when the
robot is traveling on this part.

Finally, the third simulation demonstrates the behavior
of the obstacle-crossing dynamics for the tracked trajectory
described in Sec. II-B. Figure 7a shows four crucial moments
of the simulation: 1) the tracked trajectory is deformed by
the two obstacles, o1 and o2, and attracted by the target r1;
2) condition (15) is met for o1 and the alternative path (green
line) is being generated according to (19); 3) the alternative
path reaches a better deformation according to (17), however
the RM cannot switch to it because γ(x, s) �= γ(xo1, s);
4) the RM has now switched to the alternative path, and an-
other alternative has been generated by o2. All the switches
in the replanning are denoted by solid vertical black lines in
the plots of Figs. 7b-7c, while a dashed vertical line indicates
that the point of interest is detected. Figure 7b shows the
evolution of the average error e(x,xh) =

�n
i=1 |xh,i−xi�.

After every path switch the error becomes smaller, confirm-
ing the usefulness of the proposed crossing procedure.

Finally, Fig. 7c shows the evolution of the force feedback
τM . As expected, the force feedback becomes stronger when
the tracked trajectory is deformed by the obstacle. Note also
that the discontinuities in the feedback when a switch occurs
is helpful to inform the human that tracked trajectory has
crossed an obstacle and can therefore continue more easily.
Similarly, the sudden force that is felt when a point of
interest is within range naturally guides the human operator
in directing the the reference trajectory towards it.

IV. CONCLUSIONS

In this work we have presented a new framework for the syn-
ergetic combination of an task scheduler, a cognitive-based
planner (e.g., sophisticated algorithm or a human assistant),
and a reactive (low-level) planner. We also described the
design of a bilateral (haptic) connection between the human
assistant and the reactive planner which benefits from a novel
idea based on the deformation of the whole path. Effec-
tiveness of the proposed approach has been demonstrated
through human/hardware in-the-loop physical simulations.

Future developments include the implementation of this
framework with a real mobile robot (e.g. a UAV) the exten-
sion to a multi-robot scenario.
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Dynamic Movement Primitives for Human Robot interaction

Miguel Prada and Anthony Remazeilles*

Abstract— A specialization of the generic Dynamic Movement
Primitives (DMP) framework is proposed in this article to
correctly address a key activity for human robot collaboration
that is object exchange. As a first step towards implementing
this challenging skill, this paper focuses on the arm motion to
reach the initially unknown exchange site. Two improvements
related with this application are proposed. First of all a better
control of the transition in between the two mains components
of the DMP –respectively providing a skill shape-attractor and a
goal-attractor– is described, enabling to define when and how
the transition in between these two components occur. Then an
extension to handle situations where the goal position varies
along time is proposed, which improves the convergence of the
trajectory towards a moving target (i.e. the human partner’s
hand). These two improvements are validated by comparing the
obtained behavior with human observations realized through
motion capture.

I. INTRODUCTION

The realization of robotic tasks in non completely con-
trolled environment requires to provide the robotic system
with a motion control scheme that adapts its behavior to the
observed situation. Sensor-based approaches such as visual
servoing [3] define the control law as a closed loop minimiza-
tion of the error observed in between the current and desired
visual feature values. Depending on the framework used, the
robot motion can be optimal in the configuration space or in
the image feature space. However, these approaches, in their
basic versions, are strongly goal-driven and do not allow
reproducing more complex skills in which the whole motion
profile is as important as the convergence towards the goal.

The learning of complex behaviors can be addressed
by programming by demonstration approaches, in which
the robot imitates a task demonstrated either by a human
operator observed with a motion capture system, or by
manually moving the robot itself.Statistical approaches are
frequently used for the learning. In [11], Hidden Markov
Models are used to recognize and reproduce nine different
full body expressions by a simulated humanoid. Calinon et
al. propose in [2] to combine Gaussian Mixture Models and
Gaussian Mixture Regression to reproduce several grasping
tasks taught through kinesthetics. The Dynamic Movement
Primitives (DMP) method is another approach studied in that
field. Initially introduced by Ijspeert et al. [10], the DMP
approach relies on a non-linear dynamical system forced to

*This work was supported in part by the CogLaboration European project
under contract FP7-ICT-7-2.1-287888, and by the Fluent National project
under contract DPI 2009-13653

M. Prada and A. Remazeilles are with the Assistive Technologies
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Parque Tecnológico de San Sebastin, E-20009 Donostia - San Sebastián,
Spain

follow a desired trajectory by a parametric forcing term.
It is proposed in this article to specialize the basic DMP
framework to the special case of human-robot interaction
during an object transfer.

Physical human-robot interaction, and specifically object
exchange, is a key aspect to get a fluid and efficient human
robot collaboration. Several recent works are focusing on
this specific situation: [6] shows that the human partner can
reduce the complexity of this task by adapting to the robot
behavior; [8] implements different velocity profiles for the
robot, and compares the results with human-human exchange
procedures; direct vs. indirect (placing the object on a flat
surface for the person to grasp) exchange procedures are
compared in [4]; and [1] focuses mostly on making the
robot transmit the intent of performing an exchange. In [13]
the concrete exchange procedure is handled within an off-
line planning scheme. The A∗ algorithm is used to estimate
the best trajectory to exchange the object with the human
partner, based on a 3D cost map which combines three cost
functions focused on safety, visibility and arm convenience
criteria. Once the optimal exchange path is obtained, the
actual trajectory to follow is computed with the Soft Motion
Trajectory planner, allowing active control of maximum
jerks, accelerations and velocities [12]. Nevertheless, the
obtained trajectory plan is not explicitly driven by the human
observation, and neither designed to adapt to the partner
behavior, which is something inherent to the DMP approach
proposed here. It is furthermore proved here that the initial
stage of exchange location can be skipped by adapting
accordingly the DMP framework.

This paper is proposing a DMP specialization for realizing
human robot object exchanges. As a first step, the focus
is set on the definition of the control system to bring the
robotic arm towards the exchange site. Two improvements
of the basic DMP framework are proposed, in relation with
the exchange application. The first one is related to a
better control of the transition between the feed-forward and
feedback components of the DMP by introducing a custom
weighing function. The second one addresses the dynamic
nature of the goal position in exchange motions; a velocity
based feedback term is appended to the DMP system which
improves convergence with the moving goal.

This present paper is organized as follows: next section
provides the needed background related to the DMP. Sec-
tion III describes the two extensions proposed, and the last
section compares the resulting scheme’s behavior with real
human-human exchange data recorded with motion capture
equipment.

Workshop on Robot Motion Planning: 
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012

21



II. DYNAMIC MOVEMENT PRIMITIVES
A. Original formulation

The DMP framework learns a trajectory from just one
reference sample. It can then reproduce it and optionally
adapt it to different configurations. This is achieved by
using a second order linear dynamical system (i.e. a damped
spring-like model) which is stimulated with a non-linear
forcing term. Let x(t) denote a one-dimensional trajectory
starting at x(t0) = x0 towards x(t f ) = g. In the original DMP
framework the following system is introduced [9]:

τ v̇ = K(g− x)−Dv+(g− x0) f (s) (1a)
τ ẋ = v, (1b)

with the forcing term f representing an arbitrary non-linear
function as a sum of weighted exponential basis functions:

f (s) =
∑

N
i=1 ψi(s)wi

∑
N
i=1 ψi(s)

s, (2)

and:
ψi(s) = exp(−hi(s− ci)

2). (3)

The above dynamical system, named transformation system
by the authors, is composed of two driving components, aside
of the global damping term −Dv:
• K(g− x) is an attractor towards the goal position.
• (g−x0) f (s) represents the contribution of the non-linear

forcing term scaled by the g− x0 factor.
The variable s on which the forcing term depends is a phase
variable and its evolution is determined by the following
decoupled linear system, called the canonical system:

τ ṡ =−αs (4)

This variable evolves exponentially from 1 to 0. It is used to
remove the direct time dependency of the forcing term f (s),
and provides the complete system with a time scalability by
adjusting the parameter τ . The phase variable is also used
to weigh the forcing term, enabling this way to continuously
shift towards a purely goal-attracted system.

When considering multi-dimensional trajectories, either
the complete system above needs to be replicated or, as
proposed in [9], a common canonical system can be used
for all dimensions, with specific transformation systems for
each dimension.

B. Bio-inspired formulation
In [7], Hoffmann highlights that this formulation has

scaling issues when the goal position g is close to the
trajectory starting point x0. Furthermore, this model does
not adapt correctly to situations where the goal parameter
is set to the opposite side of the trajectory origin x0 with
the respect to the original: the complete trajectory is then
completely inverted. A slightly different bio-inspired model
is thus proposed, based on evidence obtained on in vivo
studies on frogs. This modified DMP formulation is:

τ v̇ = sK(
f (s)

s
+ x0− x)+(1− s)K(g− x)−Dv (5a)

τ ẋ = v (5b)

Similarly, this system is mainly composed of two attractor
fields:
• The term K(g− x) is an attractor towards the goal

position (from now on referred to as the goal-attractor).
• The term K( f (s)

s +x0−x) represents an attractor towards
the moving point f (s)

s + x0 (the shape-attractor).
Each of these attractor fields has its influence weighed
according to the evolution of the phase variable: the shape-
attractor, weighed by s, is predominant in the beginning of
the movement, when s≈ 1; while the goal-attractor, weighed
by (1− s), is predominant in the end of the movement, as
s→ 0.

This formulation bypasses the issues arising when the goal
is close to the origin of the trajectory, and vastly improves the
adaptation to new goals since the shape-attractor does not
scale anymore with (g−x0). Also, the addition of the x0 com-
ponent on the shape-attractor enables the system to behave
properly when the initial starting point is changed. These
two properties together make the system affine transform-
invariant when learning multi-dimensional trajectories.

C. Trajectory learning

The learning procedure is the same in both models. The
first step is to give values to the parameters of the system:
• K and D involve the inherent dynamics of the second

order linear system, and determine its response to on-
line changes in the goal parameter.

• τ is the time constant and should be set to the duration
of the sample trajectory τ = t f − t0.

• α determines the decay rate of the phase variable. A
value α ≈ 4 will ensure that s≈ 0.02 at t = τ .

Once these values are fixed, the next step is to compute
the desired values for the forcing term, by isolating it from
(5a) (or (1a) for the first formulation), which results in:

fdes(s) =
1
K
(τ v̇−K(g− x)+Dv+K(g− x0)s) (6)

and then inserting the values of the sample trajectory x= x(t),
v = τ ẋ(t) and v̇ = τ ẍ(t), by taking into account the nominal
evolution of the phase variable s = exp(−α

τ
t).

With these desired values for the forcing term, the appro-
priate centers and widths of the basis exponentials in (2) can
be set, and the weights wi can be computed by fitting (2) to
(6) by least squares.

D. Limitations with respect to the intended application

Both the above formulations are quite sensitive to varia-
tions in the goal from the very beginning, as illustrated on
Fig. 1, where a sample trajectory x(t) (black solid line) is
learnt and reproduced with the goal changed from 1 to 1.5
from the beginning. In the case of the original formulation
(red curve), the contribution of g in both the shape-attractor
and goal-attractor (see (1a)) makes both components scale
when the goal is changed. In the case of the bio-inspired
formulation, as it can be seen on (5a), the shape-attractor is
not affected by the goal parameter. Nevertheless, by studying
the evolution of the phase variable (Fig. 2)one can observe
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that more weight is given to the goal-attractor for t > 0.173τ

(i.e. starting at less than 20% of the trajectory duration).
Thus, from this early moment, any variation of the goal
with respect to the reference one has a strong effect which
overrides the influence of the shape-attractor term.

As previously mentioned, the application we are consid-
ering is the arm control during an object exchange with a
human partner. The involvement of the human in the loop
requires the robotic system to deal with the exchange location
uncertainty. It also naturally constraints the robot motions to
be human-friendly or fluent.

One of the means to improve the fluency of object ex-
change is to overlap the motion of the robot with the motion
of the human partner, without waiting for the human to reach
a stable position to start moving. A solution to achieve this
is to launch the robot motion using an estimation of the
exchange site, as proposed in [13]. Nevertheless, this initial
guess would still need to be adjusted on-line to adjust the
robot motions to the human behavior.

To avoid this initial estimation, we are proposing to set the
DMP goal to the current position of the hand of the human
partner from the beginning of the movement generation. This
enables to ensure the convergence towards the exchange site
(which is currently assumed to be the human’s final hand
location). Nevertheless, from this perspective, the fact that
the DMP generator is too sensitive to alterations in the goal
parameter is considered as a shortcoming, since the initial
goal fed to the system can be quite different to the position
reached by the non predictable human partner.

In addition, the analysis of the human behavior suggests
that reaching motions performed by humans contain two
successive components [5]:
• The onset of the movement is performed based on

imperfect target information and mostly determined by
an internal dynamical model and feed-forward control.

• The final part is dominated by visual feedback control,
once the target position information gets more precise.

This evidence supports the objective of initiating the
movement with a dominantly feed-forward control policy,
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Fig. 1. Sensitivity of both the original (red curve) and the bio-inspired
DMP (blue curve) generated motions with respect to a change in the goal.
The black curve represents the learn trajectory.

0 0.173τ τ

t [s]

1

s(
t)

s

1− s

Fig. 2. Evolution of the weights of the shape-attractor (in black) and the
goal-attractor (in red) within the original and bio-inspired DMP models.

and delaying the shift of weights towards the feedback
component of the DMP transformation system to later in the
trajectory. This way the first part of motion is mainly shape-
driven, and less dependent on the goal variation, while the
second part takes care of the convergence towards the goal.
Next section presents the proposed modifications to the DMP
method to achieve this desired behavior.

III. EXTENSION OF THE DMP MODEL

A. Decoupled weighing function

Two approaches are considered to modify the evolution
of importance of each term driving the motion generation in
the transformation system:

• A change in the evolution of the phase variable can
change the weight balance between the two components.
This can be used to delay the shift of importance from
the shape-attractor towards the goal-attractor.

• A decoupling of the weights applied to each of the terms
in the transformation system from the phase variable.
Instead of weighing the attractors directly with the phase
variable, an arbitrary function of the phase variable can
be used to compute the desired weights.

The first approach proposed requires to find an appropriate
substitute for the canonical system with the desired evolution,
and in some cases this system might be difficult or even
impossible to find without recurring to piecewise or unstable
systems. Also, changing the evolution of the phase variable
by means of altering the canonical system affects all the
dimensions of the trajectory being reproduced by the DMP
method.

The second approach is interesting in the sense that the
canonical system can be kept in its original form. Further-
more, each of the transformation systems depending on the
same phase variable can use a different weighing function
if needed. Therefore it is decided to stick with this second
approach which is considered more versatile.

The new system equations which use the decoupling
approach proposed are ( fw(s) and wg(s) are respectively
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noted fw and wg for notational compactness):

τ v̇ = (1−wg)( fw + x0− x)+wgK(g− x)−Dv (7a)
τ ẋ = v (7b)
τ ṡ =−αs, (7c)

where fw(s) is now defined as:

fw(s) =
∑

N
i=1 ψi(s)wi

∑
N
i=1 ψi(s)

. (8)

In comparison with (2) the phase variable s is not included in
the (8) anymore, since it’s not longer required for the forcing
term to fade away.

Note that the gain K multiplying the shape-attractor in
(5a) has been dropped as well, since it does not have any
effect at all on the system response; this is obvious by
observing how the desired values of the forcing term are
computed with (6).

It is proposed to use a weighing function in the shape of
a sigmoid similar to the Cumulative Distribution Function
(CDF) of the Normal distribution. This function has the
advantage of relying on two parameters which easily allow
determining when the shift will occur (the mean µ of
the Normal distribution) and the duration of the shift (the
standard deviation σ of the distribution). Fig. 3 shows several
variations obtained by changing these two parameters. The
expression for the function is, substituting the dependency
on s for dependency on time:

wg(t) = 0.5
[

1+ er f
(

t−µ

σ
√

2

)]
, (9)

where er f stands for the Gauss error function.
This weighing function has one problem, which becomes

evident when the formula for the desired shape of the forcing
term fw(s) is computed. To obtain the desired fw(s) one
needs to isolate it from (7a), resulting in:

fw =
1

(1−wg)
(τ v̇−wgK(g− x)+Dv)− x0 + x (10)

(where the dependence on s has been dropped again for
compactness). It is easy to see that this expression tends to
infinity as wg→ 1, thus causing numerical issues. A simple
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Fig. 3. Weighing function wg(t) with different sets of parameters

product of the sigmoid function with a linear term (e.g.
starting at 0.9 for t = 0 and tending towards 1 as t→ τ) solves
this problem, while still ensuring that the shape-attractor
influence is fading away when s→ 0 (i.e. t→ τ). This results
on the functions shown in Fig. 4.

By using the Decoupled DMP formulation proposed in
(7a), (7b) and (7c), the moment where the change of goal
affects the output of the DMP algorithm can be adjusted at
will. Fig. 5 illustrates the behavior of the new formulation
proposed. The original trajectory learnt as well as the value
of the goal set during execution are the same as the one
used in Fig. 1. Three trajectories are generated with different
values of µ , showing how the system output is affected. In
the three cases, the g parameter is set to its final value g= 1.5
from the beginning of the trajectory, but this only affects
the trajectory at the chosen point in time. Notice that the
rightmost case, with µ = 0.7, switches to the goal-attractor
too late for the trajectory to reach the goal at t = τ , although
it will reach it shortly after, since by that time the system is
almost purely a stable linear second order system.

B. Adpatation for dynamic goals

As previously mentioned, and as a first simplification,
the DMP goal is set to the position of the human partner’s
hand. If [13] proposes to realize an off-line estimation of the
best exchange location, our approach presents the advantage
of avoiding such estimation, while maintaining a reactive
process so that the robot adapts to the human behavior and
not the contrary.

However, in some cases, and even if the modification
explained in the previous section is in place, the fact of using
the human’s current hand position as goal at each instant
in the motion generation may introduce some undesired
oscillations in the resulting trajectory. The example on Fig. 6
shows this effect with a set of data from real human motion.
In this figure the black line shows the original trajectory
used to learn the robot motion; the blue line shows the
observed motion of the human partner, with whom the robot
is performing the exchange operation; the red line repre-
sents the generated trajectory (with the DMP modifications

0 0.3τ 0.5τ 0.7τ τ

t [s]

0

1

w
g
(t

)

Fig. 4. Weighing function modified to avoid divide-by-zero numerical
errors using the same color code as in Fig. 3
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Fig. 5. Decoupled DMP with different values of µ and σ = 0.05.

presented) as response to the observed movement. It can be
seen that, given that the partner’s position is lagging with
respect to the robot’s one when the shift of weights is done
in favor of the goal-attractor, the robot motion reverses for
a certain time lapse. This oscillation is not desired, and a
gentle deceleration would be much more convenient.

To alleviate this issue, a modification of the model is
proposed which improves the smoothness of the convergence
towards a moving goal. This modification consists in adding
a velocity feedback term to the transformation system, re-
sulting in:

τ v̇ = (1−wg)( fw + x0− x)+wg[K(g− x)+Kvġ]−Dv (11)

Fig. 9 on the following section shows the response trajec-
tory generated to the same observed human motion, with the
velocity feedback term in place.

IV. EXPERIMENTAL VALIDATION

To validate the proposed technique before implementing it
onto a real robotic system, some tests have been performed
on real data involving two persons exchanging different
objects from different locations, as shown in Fig. 7. Markers
were installed on the human bodies, mainly on the right arm
of each partner (on the shoulder, elbow and hand), although
in the present study only the hand markers are effectively
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Fig. 6. Oscillation with the DMP proposed in section III-A.

used. Markers were tracked using a Vicon motion capture
system. The DMP version presented in this paper was used to
learn the three Cartesian dimensions of the right hand motion
data from a selected sequence. Then data from different
sequences have been used as observed human motions, and
the resulting generated trajectories have been compared to
the recorded response of the partner.

The resulting behavior for one specific data set is shown
in Figs. 8, 9 and 10. In each of these figures the black solid
line represents the sample trajectory used for learning, the
blue solid line represents the data used as ”observed” Human
hand position, the red solid line represents the output of the
proposed DMP method, the dotted blue line represents the
real recorded response of the other Human partner to the
movement in the solid blue line, and the solid green line
shows the response of the bio-inspired DMP formulation
under the same conditions. The measured positions are in
millimeters, and the reference used for the data capture is
located on the floor between the two users, oriented as shown
in Fig. 7, where the XYZ axis are colored in RGB order.

Also, for every motion dimension being learnt the same
set of parameters has been used for the weighing function:
µ = 0.7 and σ = 0.05.

It can be seen that the generated trajectories adjust to
the observed partner trajectory without loosing the inherent
dynamics of the sample trajectory from which they were
learnt.

It is also evident that the trajectory generated resembles
much more closely the real recorded response of the human
partner than the response of the bio-inspired DMP method.
This supports the idea that the previous versions of the DMP
do actually require an initial estimation of the exchange
location, since using the current hand position of the partner
as goal creates some unpredictable and undesired effects
in the motion generated, especially on Figs 8 and 9. As
illustrated on these examples, The extended model we are
proposing does not require such initial estimation to provide
a satisfactory behavior.

V. CONCLUSIONS

This article has proposed an extension of the DMP frame-
work to correctly learn and reproduce the human arm ap-
proach during an object transfer procedure. By changing
the phase variable behavior, we obtain a better control of

Fig. 7. Motion capture data aquired (left) and a picture of the capture
sessions (right).
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Fig. 8. Evolution of the generated trajectory in the X axis.
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Fig. 9. Evolution of the generated trajectory in the Y axis.

the transition in between the shape-attractor and the goal-
attractor, thus avoiding the need for an exchange location
estimation. Furthermore, by adding in the transformation
system a compensation for the goal velocity, the model
obtained improves its convergence towards moving targets. It
would be interesting to investigate how these improvements
could benefit other applications of the DMP framework.

These experiments do not take yet into account the re-
sponse of the human partner to the robot motion; indeed,
the behavior of the human might not be equivalent when
interacting with a person or with a robot. In order to
complete the validation of our approach and to analyze the
perception and reaction of the human when interacting with
such system, at the time of writing this article, this method is
being implemented onto a real robotic setup. The equipment
used is a Kuka LWR robot, mounted onto a vertical structure
to resemble the configuration of a human shoulder and arm;
and a Kinect device to capture the motion of the human
partner in front of the robot.

Finally, one of the main issues that will need to be tackled
regarding such application is the triggering of the robotic
motion start to get a perfect timing with the human partner.
The proper implementation of such a triggering method
will indeed highly influence the real time behavior of the
presented technique.
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Fig. 10. Evolution of the generated trajectory in the Z axis.
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Reactive Humanoid Motion Planning for Reaching Tasks

Eiichi Yoshida and Fumio Kanehiro.

Abstract— This paper addresses a reactive motion planning
framework that allows a humanoid robot, supposedly teleoper-
ated, to perform reaching tasks in complex environments with
uncertainty like a damaged plant using measured information
like voxel map or point clouds. Since sufficient reactiveness
is required for smooth human operation, we have developed
an efficient computation method to update the environment
information and to plan or replan a feasible whole-body
reaching path within a second when necessary. This highly
responsive planning scheme benefits from rapid computation of
whole-body stable posture using approximated center of gravity
and analytical inverse kinematics, combined with effective
representation of 3D environment using sphere tree that can
be rapidly updated when environmental changes occur. We
validate the proposed method in a cluttered plant environment
with moving object.

I. INTRODUCTION

Probabilistic sampling-based motion planning methods
have recently made great progress in its efficiency and gained
strong attention in many application areas. a collision-free
path that connects the initial and goal configurations is
computed using a roadmap composed of nodes and edges
that represent admissible configurations and local paths re-
spectively. Two roadmap building mechanisms are identified
as mainstream of sampling-based method: diffusion (e.g.
Rapidly-exploring random tree, RRT) and sampling (e.g.
Probabilistic RoadMap, PRM) [1], [2].

One of the most challenging applications for motion
planning is the humanoid robot, which is currently expected
to work to replace humans in difficult situations than ever.
In hazardous environments like a damaged nuclear plant
including unknown obstacles, a teleoperated humanoid seems
to be a reasonable solution than fully autonomous one. In this
case, the operator may want to give commands with certain
abstraction level like “reach that point” or “rotate that valve”,
to perform such a motion shown in Fig. 1, from a mobile or
tablet interface. The robot should have minimum autonomy
that can interpret and execute those commands to execute
its motion. We can here benefit from the capacity of the
sampling planning approach that can handle many degrees
of freedom (DOFs) efficiently.

Although many general planning algorithms have been
already proposed in the literature for humanoid motion plan-
ning, there are still two practical and critical problems to be
addressed. The first one is time spent for the planning. Since

Eiichi Yoshida and Fumio Kanehiro are with CNRS-AIST JRL (Joint
Robotics Laboratory), UMI3218/CRT, and F. Kanehiro is also with Hu-
manoid Research Group, both belonging to Intelligent Systems Re-
search Institute, National Institute of Advanced Industrial Science and
Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
(e.yoshida@aist.go.jp)

Fig. 1. Example of a reaching task in complex plant environment

the robot is teleoperated by a human, it is a very important
factor. The planning must be done within a few seconds in
order not to keep the human operator waiting too long. The
second is that a polyhedral model of the environment is not
given a priori. The environment is measured by sensors on
the robot and its model is constructed while the robot is
exploring.

For this purpose, we have recently developed an efficient
motion planner [3] that can generate humanoid whole-body
motion quickly in complex environments such as plants
with many pipes, using approximated inverse kinematics
computation guaranteeing stability and bounding volumes
with sphere trees that can model measure point clouds
or voxel map. As this is one-shot planning that assumes
complex but fixed environments, in this research we present
reactive motion planning method in changing environments.

In our previous study [4] we have proposed a reactive
motion method that combines the replanning and deforma-
tion methods. Once a collision-free path is planned and
starts being executed, the robot keeps executing the path
as long as the path remains feasible with necessary local
path deformation according to the motion of obstacles. If
the executed path becomes infeasible even after deformation,
the replanning is activated to find an alternative path through
queries on the updated roadmap. We have validated the
effectiveness of this method by applying it to redundant
manipulators. However, further improvement was necessary
so that the method can work with humanoid robots as the
computation was still heavy.

The efficient motion planning method we have proposed
[3] meets the requirements of fast computation to establish
reactive planning framework for a humanoid robot to move
in complex environment using measured information.

Workshop on Robot Motion Planning: 
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012
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II. REPLANNING FRAMEWORK

A. Parallel Planning and Execution

In this section we first present briefly our reactive planning
framework composed of parallel execution and planning [5]
that satisfies the following specifications.

• In the event of environmental changes, if collisions
are anticipated on the planned path being executed,
the planner starts replanning immediately. As soon
as another collision-free path is obtained again, it is
executed.

• During the path replanning, the robot continues its mo-
tion unless it approaches obstacles within the specified
safety distance. The path is executed in such a way that
it decelerates when approaching the obstacle and makes
a complete stop at a safety distance.

• There may be a case where the anticipated collision
on the path is removed during the replanning. In this
case, the replanning is canceled and the robot continues
executing the original path without stopping.

Figure 2 illustrates how the reactive planner works with
different states. It has the feature of having two “threads”,
Execution and Planning, running simultaneously. In Fig. 2,
the texts in box correspond to the “states” of the planner.
State transition occurs when a “signal” is received by the
thread solid arrows in Fig. 2) or when the internal status of
the thread changes (dotted arrows in Fig. 2). The signals and
internal status changes causing state transition are indicated
by italic and underlined texts in Fig. 2.
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Fig. 2. State transition diagram of replanning. The replanning is performed
by parallel threads of Execution and Planning that exchange signals. The
states are shown in the boxes and the signal emissions are indicated by
shadowed boxes. The italic and underlined texts depict the signals and
internal status changes that bring about state transitions respectively.

We assume that the environmental changes can be detected
by sensing mechanisms in an appropriate manner, to send
“Geo. change” signals to the threads as soon as those changes
are observed.

If the Execution thread at “Execute” state receives during
path execution, it verifies if replanning is necessary. If it
is the case, then Execution thread sends “Query” signal to
the Planning thread to start the replanning. If the replanning
is successful, the Execution thread updates the path and
executes the replanned path without stopping. If the robot
goes within safety distance to the obstacle before the planner
finds a collision-free path, the Execution thread makes the
robot stop by decelerating and wait for the planner to return
another collision-free path. The planning fails if a feasible
path is not found within the specified time. Of course there
are limitations in the speed of the moving obstacles that can
be avoided with respect to the robot capacity [5].

The proposed framework is implemented on RT (Robot
Technology) Middleware which has been proposed as soft-
ware platform [6] as a software unit called an RT Compo-
nent. RT Middleware encourages the modularization and the
reuse of software in the robotic field. Other software modules
communicating with the motion planner, like the robot
controllers and sensor systems to detect the environmental
changes, can also be implemented as RT Components.

B. Roadmap Reuse

The replanning is performed based on an incrementally
updated roadmap to benefit from the knowledge acquired
during the previous exploration of the environment. Two
kinds of roadmap, working and learning roadmaps are uti-
lized for this replanning. As shown in Fig. 3 the learning
roadmap stores the information about the environment over
the whole planning time, whereas the working roadmap is
continuously updated so that it includes only the valid part
involved in the current replanning problem [5]. As a result,
the working roadmap remains compact but reflects the most
recent changes in the environment.

��������	�
����


�
�����	�
����
�����

����

��	
��
	�
	������	��

���
�������
	��

��������

�����

����

�
���	����
	����
�������

Fig. 3. Learning and working roadmaps.
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III. EFFICIENT WHOLE-BODY MOTION PLANNING

A brief overview of efficient whole-body humanoid mo-
tion planning introduced in [3] is provided in this section. In
general, time consuming processes of the motion planning
are (1) a collision detection between the robot and the envi-
ronment and (2) a projection of a sampled configuration onto
constrained manifolds. Since these processes are called so
many times to find an initial path and optimize it, they should
be done efficiently. We adopt a collision model using sphere
trees and a projection that satisfies stability and kinematic
constraints by maintaining approximated center of gravity
(COG) position and computing arm and leg configurations
with analytical inverse kinematics.

A. Collision models using sphere tree

We here assume that the environment around the robot
is measured by sensors such as a stereo vision system
or a laser range finder while the robot is exploring and
those measurements are accumulated as a voxel map. Since
assigning a small cube to each voxel is memory-consuming,
we represent the environment by a sphere tree [7]. A sphere is
assigned to each voxel with the diameter equivalent to voxel
resolution. A sphere tree is composed of many spheres and is
used to detect collisions during the planning and to compute
distances to reshape the path to avoid collisions caused by
balance compensation. The sphere tree is constructed by a
top-down approach using aligned bounding box (AABB) by
dividing the groups into single sphere. The robot shape is
also approximated to detect collisions quickly and make it
easy to compute distances. The robot shape is approximated
by spheres and capped cylinders since it is easy to compute
distances.

B. Projection satisfying stability and kinematic constraints

The configuration projection unfortunately tends to be
computationally heavy because a humanoid robot must re-
spect many constraints while reaching such as feet posi-
tion/orientation and COG position. Due to high redundancy,
the usual approach is to solve whole-body inverse kinematics
numerically through iterative convergence computation. It is
however obvious that analytical solutions of inverse kinemat-
ics should be used for quick planning.

The reaching task can be naturally defined by a goal posi-
tion pe = (xe, ye, ze)

T and orientation rpye = (φe, θe, ψe)
T

of the end effector. To compute the corresponding robot
posture by projection, we define a configuration as follows.

qgoal = [pT
e rpyT

e zt rpy
T
t ] (1)

This is concatenation of the end-effector position and
orientation pe, rpye, the height of the trunk zt and an
orientation of the trunk base rpyt = (φt, θt, ψt)

T . A
sampled qgoal is projected so that it does not violate the
stability and kinematic constraints, assuming that:

1) the whole mass concentrates on a point fixed to the
trunk link at COGapprox as shown in Fig. 4.

6DOF

6DOF

Fig. 4. The original kinematic chain(left) and the simplified kinematic
chain used to find goal postures(right). Some of joints are fixed and the
original kinematic chain is split into four 6DOF chains connected through
the trunk. Distributing masses are assumed to be concentrating on the trunk.

2) the arms and legs are composed of six DOFs. This is
the case of our humanoid robot, HRP-2 [8].

First, based on this assumption 1, we can determine the
trunk horizontal position easily so that COGapprox does not
move. This can be done by computing the trunk base position
pt from COGapprox based on a fixed relative vector v
from COGapprox to the origin of the trunk link, its sampled
orientation rpyt and height zt.

Then from this trunk base position, angles of the arms
are computed by solving analytical solutions of inverse
kinematics using the trunk position and orientation pt, rpyt

and end-effector position and orientation pe, rpye. The joint
angles of legs are calculated to keep the feet positions in the
same way. We have verified that the error of approximation
of COG is within 2[cm] in most of the cases [3] and those
errors are compensated during the execution time.

C. Simulation of reaching motion

A reaching motion is planned using RRT-Connect [9]. The
initial configuration and goals obtained by the projection are
used as goals for search trees. For the reaching motion plan-
ning as well, only analytical solution of inverse kinematics
is used to find solutions quickly. The configuration space for
reaching motions is defined as follows:

qplan = [qT
arm zt rpy

T
t ] (2)

where qarm is an array of joint angles of an arm used
to reach. While RRT-Connect grows a tree, the horizontal
position of the trunk base is determined in the same way the
projection described above to keep the robot balance. Leg
joint angles are computed by solving analytical solution of
inverse kinematics as well.

IV. REACTIVE REACHING MOTIONS

The efficient planning method introduced the previous sec-
tion has been integrated into the reactive planning framework
presented in Section II, using a motion planning software
KineoWorksTM [10].

We employed the plant environment shown in Fig. 1 as
an example of complex environments. In addition to the
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(a) (b) (c) (d) (e)

Fig. 5. Reaching motion replanned to avoid a moving obstacle in a complex environment

one-shot motion planning [3], reactive path replanning is
performed in case of there are (possibly unknown) moving
obstacles that are also measured as voxels or point clouds
represented as sphere tree here.

As we assume all this point information comes from
sensors, we actually do not have to distinguish static and
moving obstacles, but we just need to update the newly
measured region. The whole environment of 4m x 5m in
Fig. 1 is represented by around 25,000 points with the
resolution of 2 cm which are modeled as spheres of radius 1
cm. The average time required for sphere-tree model recon-
struction was 28.3 ms on average with Intel processor Core i7
CPU with 2.70GHz. Although an optimal data management
is preferable in case of partial changes, collision model
updating is not a bottleneck in this scale of environment.

Figure 5 shows snapshots of replanning process to a valve
in a plant environment, where the obstacles are displayed
as transparent for better visibility. The green cube simulates
an unknown or moving obstacle that is detected only when
the robot gets closer to the goal. A collision-free path of
reaching with the left hand is first planned as shown in
Fig. 5a. When the obstacle moves downwards, new path is
immediately replanned by avoiding outside (Fig. 5b, c). The
obstacle finally comes upwards, which leads the replanned
path to avoid underneath (Fig. 5d, e).

Figure 6 is the final configuration of the planned motion.
We can observe that the left arm reaches the goal avoiding
the static environment (the pipe) and moving obstacle.

The average planning time was 96 ms, including 10ms
for average 2671 collision computation. With this example

Fig. 6. Final configuration of the reaching motion

we can conclude that the proposed planning framework can
provide a collision-free motion in a changing environment
within a second for reaching tasks, which leads to comfort-
able teleoperation by human operator.

V. CONCLUSIONS

In this paper we presented an efficient reactive planning
framework for a humanoid robot performing reaching tasks.
We integrated an efficient environment modeling and whole-
body stable configuration computation with approximated
COG and analytical inverse kinematics into a reactive plan-
ning framework in changing environments. We could show
that a replanning can be finished within a second even in a
complex environment with moving obstacle. This provides a
sufficient autonomy required for a humanoid robot that can
accept high-level task commands from human operators.

In this paper we focused on the feasibility of reactive
planning, and obviously path execution becomes the next
important issue. By integrating the real-time execution also
presented in [3], we will validate the proposed reactive
planning with first realistic simulator then a physical robot.

Future work also includes extension of the proposed
method to a variety of motions other than reaching, including
walking or more complex tasks like object manipulation or
repairing.
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Efficient Motion-based Task Learning

Nicholas Malone1, Aleksandra Faust1, Brandon Rohrer2, John Wood3, Lydia Tapia1

Abstract— Generating motions for robot arms in real-world
complex tasks requires a combination of approaches to cope
with the task structure, environmental noise, and hardware
imperfections. In this paper we present an efficient framework
for adaptive motion task learning on real hardware that consists
of task transfer, probabilistic roadmaps (PRM), and an online
reinforcement learning algorithm. Online refers to the agent
making decisions and then receiving information about that
decision immediately after the decision has been made, instead
of receiving a complete training set. The task transfer jump
starts training on the hardware with knowledge learned in
simulation. To achieve faster trainings speeds we integrate a
PRM with the learning agent. For motion-based task learning,
we use a reinforcement learning algorithm loosely based on
human cognition. We demonstrate the framework by applying
it to two pointing tasks on a 7 degree of freedom Barrett Whole
Arm Manipulator (WAM) robot. The first task has a stationary
target and illustrates the ability of the framework to quickly
adapt and compensate for hardware noise. The second task
goes a step further and introduces a non-stationary target,
demonstrating the framework’s ability to adapt quickly to a
new environment and new task.

I. I NTRODUCTION

In order to perform tasks, robots must be able to adapt to
a changing environment and problems. In order to process
real world information, online planning has to process higher
volumes of data with tighter deadlines at every time step. The
planning is subject to hardware imperfections and errors in
reading sensory information. Machine learning techniques,
especially online reinforcement learning (ORL) is a useful
tool for robotics motion learning and planning. It provides
a closed-loop feedback system continuously incorporating
current environment information into the planning and pro-
ducing the motions required to perform a task. However,
online reinforcement learning comes with several challenges
that make it potentially problematic to use on real hardware.
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Implementation of an ORL algorithm must be carefully
designed to be safe for the robot both in terms of collision
avoidance and producing motions that don’t strain hardware.
Training the ORL agent from scratch on real hardware can
cause wear and tear to the hardware and thus change the
dynamics of the system. Furthermore, motions take longer
time to execute on hardware than in simulation, and the
training phase could become impractically lengthy. Lastly,
the sheer size of real world state spaces and physical laws
of motion that need to be processed at every time step
in real-time could make ORL prohibitively computationally
expensive.

We propose a framework based on ORL that successfully
overcomes the challenges above and learns motion-based
tasks suitable for a real robot. To jump start the learning on
hardware, and avoid a lengthy training phase, we transfer the
knowledge from a task trained in simulation. To achieve per-
formance suitable for a physical system and ensure the safety
of the system, we rely on probabilistic roadmaps (PRM)
for dimensionality reduction. The state space information
reduced by the PRM is passed to our learning agent, which
learns to produce efficient motion plans. We use a Brain
Emulation and Cognition Architecture (BECCA) [8] agent. It
is an adaptive online reinforcement learning algorithm paired
with an unsupervised hierarchical feature creator. BECCA’s
algorithm contains a decay feature, allowing the agent to
forget features and motion plans over time. This feature is
especially useful for changing environments, as the agent
continuously learns and updates plans based on the current
feedback from the environment.

To demonstrate the framework, we implement it on a
pointing task on a 7 DoF WAM using all 7 degrees of
freedom. The robot needs to autonomously learn how to
point at a target location in its environment regardless of the
start position. In the first series of the experiments, the target
location is stationary. In the second series of experiments
the target location moves. We assess the performance of
the framework by measuring how well the agent adapts
to hardware imperfections and measurement noise. We also
examine the performance of the framework by looking into
time savings obtained by using transfer learning.

Our results show near-identical performance between sim-
ulation and transferred hardware runs. We show between
100 to 600 time steps of savings obtained by using transfer
learning, and demonstrate an agile agent that quickly adapts
to the new environment within 500 time steps. The work
here extends our previous work in [4]. Previously we utilized
transfer to accelerate our experimental procedures without
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much discussion of the exact transfer process. Here we delve
deeper into the ramifications and possibilities of transfer
learning for robotics and reinforcement learning.

The rest of this paper is organized as follows: section
II gives an overview of the related work. Section III dis-
cusses the hardware in more detail. Section IV discusses
our methodology, and section V presents our experimental
results. Finally, section VI concludes the paper with the
framework’s benefits to online, reactive motion-based learn-
ing.

II. RELATED WORK

Taylor and Stone defined a taxonomy of transfer learning
in the reinforcement learning domain in [10]. Using that
terminology, our source task is a simulated pointing task. We
have two target tasks. In one, the target task has the same goal
and algorithm in both simulation and hardware runs. In the
other the target is moved but it still has the same algorithm.
The transferred knowledge is a set of feature groups and a
Q-function.

There is active research on WAM training through human
demonstration. A WAM system is represented as a canonical
system of motor primitives [6]. The direct policy search
class of reinforcement algorithms learns the parameters of
the canonical system, while using the demonstration as an
initial policy [6]. This line of research has produced a WAM
capable of playing table-tennis [5], performing a ball-in-a-
cup task [2], and flipping a pancake [3].

Unlike the above approaches which approximate the WAM
model, the BECCA agent is agnostic to the type of the
system and environment. At every time step the agent
receives two signals: a sensory vector and a reward signal.
The sensory vector is passed to a hierarchical feature creator.
The resulting features and the reward signal are passed to the
reinforcement learner.

PRMs are a method for solving complex path planning
problems [1], and they tackle these complex problems by
working in conformation space (C-space). PRMs work by
building a roadmap. A roadmap is a graph where configu-
rations are nodes and connections are edges. First, a set of
configurations are sampled. Then, for each sampled node a
set of candidates nodes are selected to form connections.
PRMs have been extended to work in a wide variety of
environments, ranging from simple open environments, to
complex narrow passageways [1]. They have also been used
in environments with moving obstacles [11].

III. H ARDWARE PLATFORM

The Barrett Whole Arm Manipulator (WAM) platform is
a 7 degree of freedom (DoF) robotic arm. It is cable-driven
and controlled with position encoders and torque estimation.
The WAM has been connected to a GE Intelligent Platforms
reflective memory network in a hub design that allows
multiple computers to share memory at speeds ranging from
43 MB/s to 170 MB/s. The reflective memory networks
allow remote computers to handle the planning and learning

processing, while leaving a small and fast computer on-board
the WAM to handle simple motion control.

IV. M ETHODS

We propose a framework for online motion-based task
learning that includes knowledge transfer from simulationto
hardware. Subsection IV-A discusses transfer methodology,
and subsection IV-B explains the agent in more detail.
Subsection IV-C contains details on PRM implementation
in our framework.

To test the performance of the framework, we implement
it on a WAM and use two series of tasks: with a stationary
target which is described in IV-D, and with a changing target
described in IV-E.

A. Transfer Learning

Transfer learning typically refers to utilizing information
learned in the past on a task in the present [10]. This past
learning can be transferred to a new task or to the same
task under different constraints. Transfer learning has also
been utilized in transferring knowledge from one robot to
another robot that may have a different internal architecture
to represent the world [10]. Taylor and Stone [10] define
jump start and time to threshold performance as two metrics
for transfer learning. Jump start defines the amount of gain
an agent initially recieves from transfered knowledge. Time
to threshold performance defines the amount of time it takes
an agent to reach the threshold performance, which is the
best the agent can do at a given task.

In this paper, we consider a much narrower version of
transfer learning. We transfer learned knowledge of a single
task between a perfect simulation of a robot to imperfect
robotic hardware. In simulation the robot always receives the
exact same joint angles for a particular state, but in hardware
the joint angles are subject to small error so re-entering the
same state will not have the exact same state information.
The source task uses the same learning agent, parameters,
and reward function as the target task. The only difference
is that the source task interacts with the WAM simulator
while the target task interacts with the WAM hardware.

The WAM simulator is a simple kinetic simulator, rep-
resenting the arm with seven points each corresponding to
one degree of freedom. The arm moves in the simulator by
simply adding the state and action vectors. The simulator
does not inject noise, and performs perfect movements. The
WAM arm, on the other hand, performs the movements as
described in III. The resulting motion is subject to error in
performing the movement.

When performing the transfer, we transfer the entire agent
with all its internal states and accumulated experience. We
only change the world model that it interacts with from the
simulator or the WAM interface.

B. BECCA

BECCA is a general reinforcement learner [4]. It takes
an input sensory vector as well as a scalar reward from the
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world and then produces an output action vector. Internally
BECCA combines an unsupervised feature creator with a
reinforcement learning agent. Figure 1 shows an overview
of the architecture.

feature

creator

reward

calculation

reinforcement-

based learner world

BECCA Agent

Fig. 1: BECCA’s Architecture - At every time step, BECCA makes an
observation in the world, extracts features from the sensory input, performs
an action in response to the input, and receives a reward.

The feature creator identifies repeated patterns in the input
vector and groups loosely correlated elements [7] [8]. The
groups are considered to be subspaces, and the unit vectors
of these subspaces are the extracted features. New inputs
are projected onto each feature and the single feature, in
each group with the greatest response magnitude is added
to an active feature vector [8] [7] [9]. All other features
with smaller response magnitudes are not added to the active
feature vector. The active feature vector is then passed to the
reinforcement learner, and on the next time step is fed back
into the feature creator so that more complex features can
be generated.

The reinforcement learner consists of a cause-effect table.
The cause is the working memory, and the effect is the
current active feature vector. Working memory is simply the
sequence of actions that the agent has chosen in the last few
time steps. The cause-effect pairs are then associated with
an experienced reward. To use this model, the reinforcement
learner compares its current working memory and the current
active feature vector to the elements in the table. It then
chooses the entry which is associated with the highest reward
and takes the next action in the cause sequence.

In terms of traditional Markov Decision Process (MDP)-
based reinforcement learning, the cause-effect pairs are
equivalent to action-state pairs. The cause-effect table with
the working memory and its expected reward roughly corre-
sponds to a Q-function in traditional MDP-based reinforce-
ment learning. However, BECCA’s model does not assume
the Markovian property and might depend on more than one
previous state.

As time progresses, less frequently observed cause-effect
transitions fade from the memory and the cause-effect ta-
ble. This makes BECCA inherently able to adapt to new
situations and environments at the cost of a steeper learning
curve.

While BECCA is mostly automated, an engineer must
design a task to interface with BECCA via sending sensory
vectors and interpreting action vectors. Such an interfaceis

called a task. A task simply defines what information from
the world will be sent to the agent, and in what format. Note
that BECCA is agnostic to the format. The task also defines
how to read an action vector and move the robotic actuators.
Again, note that BECCA is agnostic to how this is defined,
and it will learn whatever format the engineer devises.

C. Probabilistic Roadmaps

In this paper, we use the PRMs combined with learning
agent techniques from our previous work [4] to build a
roadmap for the reinforcement learning agent to navigate.
The learning agent is provided with the configurations
and the adjacency information. It is constrained to making
straight line movements along the edges in the adjacency ma-
trix, thus constraining the reinforcement learner to learnhow
to navigate the roadmap. Each experiment generates a new
random roadmap, except for when a transfer occurs. During
a transfer, the previously learned roadmap is preserved. The
PRM is the underlying state space provided to the learning
agent.

D. Pointing Task with Stationary Target

The sensory vector is an element binary vector, since the
PRM containsn nodes. Each node represents a particular
configuration of the robotic arm. When the robot is at a
particular configuration the corresponding element in the
sensory vector is set to 1.

Algorithm 1 shows how the pointing task is constructed.
The action vector is a 4 element long binary vector and
is parsed by theinterpret function. In this task, we have
constrained BECCA to only return a single 1 in the action
vector. The interpret function in Algorithm 1 does the
following: The 1 in the action vector represents BECCA
selecting to move to one of the 3 neighbors, and the4th

element is interpreted as staying at the current configuration.
For example the action vector[0, 1, 0, 0] is interpreted by
the task as selection to move to the second neighbor of
the current configuration in the roadmap. The function then
returns the configuration of the selected neighbor.

E. Pointing Task with Non-stationary Target

The formulation and the setup of the non-stationary target
task is the same as in Section IV-D. The reinforcement

Algorithm 1 Task Step

Require: Task
1: Task.agent.action = [0, 0, 0, 0]
2: while not coverging do
3: newLocation← interpret(task.agent.action)
4: sendToWAM(newLocation)
5: task.currentPosition← read current WAM location
6: task.SensoryInput← task.currentPosition

7: task.reward← task.calculateReward()
8: task.agent← agentstep(SensoryInput,Reward);
9: end while
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learner is trained on an initial pointing task and then trans-
ferred to hardware, however upon being transferred the goal
state is changed. Thus, the learning agent must compensate
for the changed goal, while learning to adapt to the dynamics
of the hardware system. Specifically, for this task the goal
state is moved to one of the neighbors in the roadmap of
the simulation goal state. The reward structure is changed so
that the new goal state is reward 100 and the neighbors of
the new goal 10 and the neighbors of the neighbors 0.1.

V. EXPERIMENTS

We perform two experiments. One experiment is station-
ary target pointing task and the other is a non-stationary
pointing task. All experimental results are averaged over
five executions. Throughout the experiments, we measure
the performance on the learning agent by measuring its
cumulative reward. When the learning agent is transitioned
from simulation to physical hardware, it is placed in a config-
uration that is as far as possible from the goal configuration.

We present the performance of the learning agent on
hardware compared to performance in simulation. The agent
executes in time steps but the graphs are shown in blocks,
where 1 block equals 100 time steps. We look at the
time savings brought on by using transfer learning, and the
initial boost of performance that was obtained by knowledge
transfer. In case of the non-stationary task, we will look at
the time it takes the agent to react to a change in environment
and recover to the previous level of performance

Each experimental run is executed on a new roadmap of 50
configurations generated using PRMs. Each configuration is
connected to 3 neighbors and itself. A random point in the
50 configurations is chosen as the goal. The goal node is
given a reward of 100. The neighbors of the goal are given
a reward of 10 and the neighbors of the neighbors are given
a reward of 0.1. All other configurations are given a reward
of 0.

A. Pointing Task with Stationary Target

Figure 2 shows the cumulative reward of the pointing task
with the stationary target in simulation and on hardware. The
vertical line indicates the transition from the simulationto
the hardware. The results show near-seamless transition, and
the average performance of the agent on hardware very close
to the performance in the simulation.

Table I shows the average cumulative reward for each
experiment after stabilization, before and after transition to
real hardware. Stabilization in simulation occurs at 20 blocks.
The performance of the agent on the hardware outperforms
the agent in simulation by 154 units of reward.

To better demonstrate the advantages of using the transfer
learning in our framework, the pointing task with stationary
target experiments were run again in a different manner. Five
completely untrained learning agents were run on hardware
for 20 blocks and the results averaged together. Then five
agents which were trained for 100 blocks in a simulation
were run on hardware for 20 more blocks and averaged

TABLE I: Average cumulative rewards in simulation and on hardware
after the stabilization for 7DoF task with a stationary target and 7DoF task
with a non-stationary target

Task Simulation Hardware
Stationary Target 7460.3 7614.8

Nonstationary Target 7460.3 7491.5

together. Figure 3 shows the comparison of the stationary
pointing task using transfer to the same task without using
transfer. The advantages of using transfer are seen primarily
in the jump start and the time to threshold metrics. Table II
shows the transfer metrics for the three experiments. Jump
start shows the immediate gain from using the transfer. The
pointing task starts very close to the threshold performance
using the transfer and has a jump start gain of 5716. In
all random runs the transfered learning agent outperforms
the non-transfered learning agent (Table II). Furthermore
the transferred task reaches the threshold performance in 2
blocks compared to 7 blocks without transfer (Figure 3). It is
important to note the time saved by using transfer learning.
Table III shows the run times for simulation versus hardware
for 20 blocks. It is clear that simulation is faster by up
to 1 hour and 55 minutes. Using transfer learning it takes
significantly less physical time on the robotic hardware for
the agent to perform the given task as near optimal levels.
This not only saves valuable time but it also saves valuable
wear and tear on the hardware.

It is important to note that the learning algorithm is not
executing pre-planned paths. It learns from experience which
paths lead to highest reward and attempts to follow those
paths. The paths learned in simulation provide BECCA with
a strong foundation to work from, however each execution
of the learning problem finds different paths due to the
randomness of exploration. Thus, it is possible to witness
executions of BECCA on the same underlying roadmap with
slightly varying performances.
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Fig. 2: Cumulative reward for the pointing task with stationary target
per time step. The vertical line indicates where the learningagent was
transitioned from simulation to real hardware.
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Fig. 3: Cumulative reward for the pointing task running on hardware
with stationary target task with transfer and without transfer per time
step. Transfer is when an agent trained in simulation is transferred to
hardware. Jump start shows the initial gain obtained by usingthe transferred
knowledge. Time to threshold indicates the time that the task without the
transfer needs to achieve the same level of performance as the task with the
transfer.

TABLE II: Transfer Metrics for stationary and non stationary tasks. Jump
start shows the gain from using transfer. Threshold gain shows the reduction
in time steps needed to reach the threshold performance

Task Metric Average min max

Stationary
Jump Start (reward) 5716 2757 9280

Threshold Gain (steps) 500 200 700

Non-stationary
Jump Start (reward) 1313 364 1702

Threshold Gain (steps) 100 100 400

B. Pointing Task with Non-stationary Target

In this experiment the reinforcement learner is trained on
an initial pointing task and then transferred to hardware.
However, upon being transferred, the goal state is changed.
Thus, the learning agent must compensate for the changed
environment. The goal state is moved to one of the neighbors
in the roadmap of the simulation goal state. The reward
structure is changed so that the new goal state is reward
100 and the neighbors of the new goal 10 and the neighbors
of the neighbors 0.1.

Figure 4 shows the results of 100 blocks of simulation and
then 20 blocks of running on hardware where the goal has
changed. Initially there is a steep performance drop, but the
reward does not drop to zero. The agent quickly recovers and
learns the new reward structure within 6 blocks. This shows
the online nature of the BECCA algorithm. It is able to first
learn one environment and then be placed into a slightly

TABLE III: Average time in minutes to run 20 blocks in simulation and
on hardware for 7DoF task with a stationary target and 7DoF task with a
non-stationary target

Task Simulation (min) Hardware (min)
Stationary Target 23 122

Non-stationary Target 24 121

different environment but able to compensate for the change
quickly.
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Fig. 4: Cumulative reward for running in simulation and then transferring
the task to hardware. The transfer occurs at 100 blocks.

Figure 5 is a comparison between the agent having previ-
ously learned a pointing task to an agent without any prior
knowledge. However, the agent with knowledge has learned
to point to a different goal in simulation before being run on
hardware. The untrained agent is also run on hardware but
has a stationary target. Thus, the transferred agent has some
information about the structure of the environment but it does
not have the exact reward structure as the goal was moved
before being placed on real hardware. The figure shows that
the agent with prior knowledge has a small jump start of
1313 units of reward and reaches the threshold performance
1 block faster than the agent without transferred knowledge.
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Fig. 5: Cumulative reward for the pointing task running on hardware
with a non-stationary target task with transfer and withouttransfer per time
step. Jump start shows the initial gain obtained by using the transferred
knowledge. Time to threshold indicates the time that the task without the
transfer needs to achieve the same level of performance as the task with the
transfer.
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TABLE IV: Average Time for Convergence to Threshold Performance

Task w/o Transfer (min) w/ Transfer (min)
Stationary Target 40.8 11.7

Non-stationary Target 41.1 33.0

C. Timing

Timing data is collected by simply measuring the differ-
ence between start time and stop time for runs. Table III
shows the timing data for running the learning algorithm in
simulation versus on real hardware. The run time on hard-
ware is approximately 5 times longer due to the amount of
time it takes to for the arm to move between configurations.
Each move on the WAM takes approximately 3.5 seconds
to compute and execute. This computation time includes the
feature extraction and action decision time for the learning
algorithm. In contrast, in simulation it only takes 0.5 seconds
of time to execute a complete move.

Since BECCA is an online learning algorithm, it can
adapt to changes in real time. However, because it is an
unsupervised learning agent it still requires repeated ex-
amples of the new environment. Thus, at 3.5 seconds an
action BECCA will take around 30 minutes to adapt to a
changed environment when running only on real hardware.
The real time metrics that we are interested in are amount
of time it takes to converge from an initial state to a the
threshold performance state. This time is important because
it represents the amount of time in which the robot is
learning instead of performing the desired task. This metric
is recorded by simply measuring the difference between the
start time of run and the time of each step. Table IV shows
the average time for reaching the threshold performance
with and without transfer learning. This table shows that
transfer learning reduces the learning time by 29 minutes
for a stationary target and 8 minutes for a non-stationary
target.

VI. D ISCUSSION

We demonstrated an efficient online motion-based task
learning framework based on reinforcement learning that
works in high-dimensional spaces in real-time, is reactiveto
changes in the environment, performs safe hardware motions,
and efficiently learns on hardware. We demonstrated the
framework by implementing it on a 7 DoF WAM using
all joints to produce pointing motions with both stationary
and non-stationary targets. The framework is robust and
extensible to other robotics systems as well as with different
model formulations, and for a large variety of tasks as well.

Dimensionality reduction and collision checks can be
handled through PRMs for any motion-based task. When
PRMs are used in this manner, they impose hard limits
on the system. For example, self-collision states tend to be
invariant to the type of environment or the task, and are good
candidates to be precomputed ahead of time. When there is
error in the model used for simulation caused by noisy sensor
data, the robot can explore the validity of the simulation’s

roadmap and learn how to efficiently navigate in the physical
environment.

Transfer learning can be used to avoid early learning
phases when the agent’s performance tends to be erratic,
to reduce wear and tear on robot, and to speed up the
learning process on the real hardware. It can be a powerful
techniques to mitigate the long convergence times of rein-
forcement learning. Combining transfer learning, reinforce-
ment learning and probabilistic roadmap methods produces
a powerful framework for solving complex robotic tasks. By
harnessing each method’s strengths, the weaknesses of the
other methods can be mitigated.

An online reinforcement learning algorithm is a suitable
candidate for a planner when paired with the above tech-
niques. Such a reinforcement learner continuously learns and
updates its policy by incorporating most recent experience
from the environment and produces motion plans that are
adaptive, real-time, and reactive. Hardware soft limits can
be implemented through the reward function.
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Autonomous Waypoint Generation Strategy for On-Line Navigation in
Unknown Environments

Sanjeev Sharma and Matthew E. Taylor

Abstract— This paper introduces a reinforcement learning
(RL) based autonomous waypoint generation strategy (AWGS),
for on-line path planning in unknown environments. An RL
agent intelligently analyzes its surroundings and generates
waypoints within the robot’s field of view. The RL agent
uses an MDP for waypoint generation that is formulated to
be independent of the domain, robot model, and state space
dimensionality. The RL agent requires no environment-specific
information beyond the robot’s field of view. A path to the
selected waypoint is then generated by a path planner. AWGS
is applicable to many path or motion planners. However, for
brevity, this paper focuses on path planning without the robot’s
dynamics constraint. Experiments (i) compare the performance
of RL agent’s policies with RRTs and A⋆, and (ii) show that
AWGS can: (a) be trained and then used with different robot
models, domains, and state-spaces, and (b) successfully navigate
in environments with non-convex obstacles.

I. INTRODUCTION

Autonomous robots are becoming increasingly common
in domestic, commercial and military settings. Such robots
must be able to quickly plan a safe route from their current
location to the goal, while still being flexible and adaptable to
unforeseeable obstacles and environmental uncertainties. De-
spite recent successes, e.g., the Mars rovers [1] and DARPA
Urban Challenge [2], on-line navigation in unknown environ-
ments remains a challenging problem. This paper presents
an autonomous waypoint generation strategy (AWGS) that
uses reinforcement learning (RL) [3] for on-line navigation
of mobile robots in unknown 2D- and 3D-environments. In
AWGS, an RL agent analyzes the local surroundings of the
robot and generates a waypoint in its field of view (FOV).
An underlying path planner (ECAN [4]) then plans a path
to reach the waypoint. One of the key insights is that the
RL agent’s MDP is formulated to be independent of the
domain and space dimensionality, allowing it to generalize
its waypoint generation policy across different environments.
This space-independence also enables planning the way-
points in 3D, using the identical computations as in 2D,
which automatically generalizes learning from 2D- to 3D-
space (and vice-versa) and makes AWGS effective for the
2D- and 3D-navigation problems.

Using waypoints or sub-goals for reliable navigation in
2D-environments has been widely discussed. Shiller [5]
proposed exit-points, fixed locations on the boundary of ob-
stacles for on-line navigation in known environments, which

Sanjeev Sharma is a graduate student in the Computing Science Dept. at
University of Alberta, Canada. sanjeev1@ualberta.ca

Matthew E. Taylor is an assistant professor in the Computer Science
Dept., Lafayette College, USA. taylorm@lafayette.edu

is restricted to 2D-space. Krogh et al. [6] presented a geo-
metrical method for selecting sub-goals corresponding to the
edge and vertices of convex polygonal obstacles in unknown
2D-environments. Thus, the approach may not be applicable
for arbitrarily shaped obstacles. Maida et al. [7] placed local
sub-goals inside a rectangular arena of fixed dimensions,
constructed around the robot, at a fixed distance from the
robot and at the intersection of line segments (forming the
path) avoiding the obstacles. The approach is thus limited
to the extraction of waypoints along the generated path (in
2D). In contrast, AWGS intelligently selects a waypoint for
the planner, which then plans a path to the waypoint, and
is thus not restricted by the abilities of a planner. Wang et
al. [8] selected midpoints between obstacles, in front of the
robot, as sub-goals in 2D-environments. A robot moving in a
3D-space may pass over an obstacle instead of searching for
an opening between obstacles. AWGS can select waypoints
to pass in between obstacles or to go over an obstacle in
3D-space. While the previous approaches are limited to 2D-
space, AWGS is applicable in both the 2D- and 3D-space.

During the last decade, sampling based planners like
RRTs [9] have been successfully demonstrated in many
robotics applications. RRT methods explore the environment
by randomly sampling it to construct trees. On-line planning
with RRTs in structured (2D-) environments (e.g., following
a road) has been addressed in [10]. The constraint that the
vehicle should follow a road effectively provides a direction
(forward) for the expansion of RRTs. In contrast, AWGS
works in unstructured (no predefined path or road), and in
both 2D- and 3D-, environments by intelligently generating
the waypoints in the FOV. Karaman et al. [11], [12] proposed
RRT⋆ for optimal on-line path planning. However, RRT⋆

requires a complete map of the environment for building an
initial feasible plan to the goal (an initial tree), before the on-
line planning starts. Then during the execution of this initial
plan, a rewiring step modifies the tree (on-line) to generate an
optimal solution [11]. The requirement of an initial solution
to the goal may create difficulties in planning with zero prior
knowledge of an environment. On the other hand, AWGS
requires no prior map and assumes no information of the
environment beyond the robot’s field of view.

AWGS is applicable to many planners, however, this paper
focuses on using the ECAN planner [4] because: (i) ECAN’s
implementation is similar for both 2D- and 3D-space; (ii)
ECAN guarantees collision avoidance for non-convex shaped
robots, which makes the presentation of non-convex shaped
robots easier; and (iii) ECAN may fall into oscillations when
obstacles are non-convex, making it easier to demonstrate
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2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
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Fig. 1: AWGS uses domain and space independent RL agent for waypoint
selection. The underlying path planner used in experiments is ECAN.

that the AWGS can overcome the shortcomings of a planner1,
and is not restricted by the abilities of an underlying planner.
Also, an extension of this paper discussing the multi RL-
agents approach and the planning time is available [18].

The contribution of this paper is to present a novel for-
mulation, using RL, for waypoint generation that: (i) works
identically for both the 2D- and 3D-navigation problems; and
(ii) helps improve the performance of an underlying planner.
The rest of this paper proceeds as follows: section-II presents
background; section-II-B briefly describes ECAN; section-
III describes the feature space construction and the reward
function for the RL agent; and section-IV experimentally
demonstrates the properties of AWGS.

II. BACKGROUND

This section provides necessary background, describes the
notations used in this paper and presents a selection of related
work. This research assumes that the robot: (i) cannot see
beyond its field of view (FOV); and (ii) knows its coordinates
zta, at each time-step t, and the coordinates of the goal zg.
A point-cloud of m obstacles at time-step t is represented
as Ot with zoi , i = 1, ...,m representing the location of ith

point-obstacle in the cloud. A set of n-dimensional positive
definite symmetric matrices is denotes as Sn

++.

A. Reinforcement Learning

The underlying reinforcement learning (RL) problem of
waypoint generation in AWGS is solved as an MDP [3]. In
RL, a state-action value function Qπ(s, a) for a policy π
predicts the long-term reward if an agent takes action a ∈ A
in state s ∈ S and thereafter follows policy π : S → A.
The agent’s probability of taking an action a in s is given by
π(s, a). The agent’s task is to learn a policy π that maximizes
the total expected reward from any s ∈ S, where the reward
may be discounted by a discount factor γ ∈ [0, 1]. By taking
action a in s, agent makes a transition to state s′, and receives
a reward r(s, a, s′). The value function is approximated
using a linear function approximation architecture: Q(s, a) =
ϕ(s, a)Tw, where ϕ(s, a) ∈ Rk is the state-action feature
vector for (s, a) and w ∈ Rk is learned using samples.

B. ECAN Navigation: Convex Programming Formulation

For navigation, ECAN forms a locally maximal ellipsoid
Ψt, around the robot while taking the layout of local obsta-
cles into account, oriented in such a way that favors progress
towards the goal. The ellipsoid is constrained: (i) to contain
the robot, (ii) to keep goal location on the boundary or

1AWGS has been implemented successfully for RRTs, A⋆, unconstrained
2D- and 3D-splines, and motion planning: (i) with Mixed Integer Program-
ming and (ii) of a Car Like Robot: http://www.searching-eye.com/awgs.mp4

outside, and (iii) to keep all the obstacles outside its boundary
— ensuring collision avoidance. On time-step t, the ellipsoid
Ψt is parameterized by variables (P t, qt, rt) and is defined
as Ψt = {x|xTP tx+xT qt+rt ≤ 0}, where P t ∈ Sn

++, q
t ∈

Rn, x ∈ Rn, rt ∈ R and n = 2 for 2D navigation and
n = 3 for 3D navigation. Let z ∈ Rn be an arbitrary
location in the space and let Ψt(z) = zTP tz+zT qt+rt. The
ellipsoid formation problem is then solved as semi-definite
programming (SDP): (α, β are trade-off parameters and I is
the identity matrix with the same dimensionality as P t)

minimize Ψt(zg) + α||Ψt(zta)||2 + β
∑

i Ψ
t(zoi)

subject to Ψt(zta) ≤ −1; Ψt(zg) ≥ 0; Ψt(zoi) ≥ 1

P t ≽ I; zoi ∈ Ot; i = {1, ...,m}.

The first constraint ensures that the (point-) robot lies inside
Ψt, the second constraint ensures that the goal lies outside
or on the boundary of Ψt, the third constraint ensures
that all the obstacles in the point-cloud (Ot) lie outside
Ψt, and the positive definite constraint on P t (P t ≽ I)
ensures that Ψt is an ellipsoid. Objective Ψt(zg) orients the
ellipsoid to point towards the goal; ||Ψt(zta)||2 checks the
ellipsoid’s unbounded growth along its principal axis [4];
and

∑m
i=1 Ψ

t(zoi) forms a locally maximal ellipsoid, around
the robot, bounded by surrounding obstacles. If the robot is
finite (i.e., not a point mass), the first constraint is replaced
by a constraint that the convex-hull of the robot should lie
inside Ψt. Next, a navigation direction and a step-length
(∆s) are computed using the obtained ellipsoid. However, the
navigation direction is biased with the ellipsoid’s orientation
(often pointing towards the goal), potentially allowing the
agent to become trapped between non-convex obstacles [4].
Within the AWGS, zg in the SDP is replaced by the next
waypoint. Thus, instead of planning to reach the goal, ECAN
in AWGS always plans to reach the next waypoint.

C. Related Work: Reinforcement Learning

The RL agent in AWGS learns a domain and space
independent policy. The reutilization of a policy has been
widely addressed in transfer learning [13]. In this context,
state of art methods typically suffer when generalizing the
learned policy from one 2D-environment to another 2D-
environment — at least some amount of retraining in new
environment is required (see for example [14]–[17]).

III. FEATURE SPACE CONSTRUCTION

This section describes the computation of parameters
required to construct the feature space for the RL agent.
These parameters are readily available during the navigation
and are computed identically in 2D- and 3D-space. Obstacles
are represented using a potential map (one of the parameters
of feature space). The potential map helps the RL agent to
classify safe and unsafe regions for waypoints. The geometric
parameters help the RL agent to make progress towards
the goal, while ensuring safety. The RL agent’s task is
to generate a waypoint in the FOV, while taking collision
avoidance into account, so that the robot can eventually reach
the goal by following waypoints.
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Fig. 2: (a) shows discretized grid-points in the FOV and (b) shows the
corresponding potential map; red regions represent higher grid-point values.

The next section introduces the potential map. Then the
geometric parameters, which allow goal-directed generation
of waypoints, are discussed in section-III-B. Finally the MDP
for the RL agent is formulated in section-III-C.

A. Potential Map

A local potential map represents obstacles, for the RL
agent, in the robot’s FOV at each time-step t. To form the
potential map, the FOV is discretized. Using polar coordinate
system, robot’s view is restricted by ⟨RFOV, θFOV⟩ in 2D-
space and by ⟨RFOV, θFOV, ϕFOV⟩ in 3D-space. The FOV is
thus defined by ⟨r, θ⟩ and ⟨r, θ, ϕ⟩ in 2D- and 3D-space
respectively, where r ∈ (0, RFOV], θ ∈ [−θFOV,+θFOV]
and ϕ ∈ [−ϕFOV,+ϕFOV]. The parameters dr, dθ and dϕ
represent discretization along the respective polar coordi-
nates. The total number of grid-points N , in the robot’s
FOV is ((2θFOV/dθ) + 1)RFOV/dr and ((2θFOV/dθ) +
1)((2ϕFOV/dϕ) + 1)RFOV/dr in 2D- and 3D-space respec-
tively. One of these grid-points is then selected as a waypoint
by the RL agent. The obstacles in the FOV are converted into
an equivalent point-cloud. When obstacles are discovered in
the FOV, then the grid-points lying on the faces/edges of
these obstacles are added to the point-cloud Ot. Let there
be m point-obstacles in the point-cloud (Ot). The potential
map, for each of the N grid points, is then computed as:

Vq ← max
j:1,...,m

exp

(−(max {0, ||lq − zoj ||2 − δ})2

σ2

)
where q = {1, ..., N};Vq ∈ [0, 1] is the value of qth grid-
point in the potential map; δ is the radius of the smallest
circle encircling the robot (δ = 0 for a point robot); and
lq and zoj are locations of the qth grid-point and the jth

obstacle in the point-cloud, respectively. If m = 0 then
Vq = 0,∀q = {1, ..., N}. Fig. 2 shows the grid-points and
corresponding potential map in 2D-space.

B. Geometric Parameters Computation: θgr,ρgr,ζ

After computing the potential map, three geometric param-
eters ([θgr

j , ρ
gr
j , ζj ]) are computed for each of the grid-points

in the FOV. These parameters, together with the potential
map, enable environment independent generation of the
waypoints, while ensuring safety. The first two parameters
measure the progress towards the goal if the jth grid-point is
selected as the waypoint. The first parameter θgr

j ∈ [−π, π] is
an angle between the vectors connecting zta to zg and zta to
the jth grid-point (lj). The second parameter is a normalized
distance of the jth grid-point from the goal location, ρgr

j =

agent 

direction 

of  

navigation  

goal 

grid-point 

Unknown area  and 

out of agent Ɛ͛ VŝĞǁ 

1j 
Obstacle 

 ௝௚௥ߠ
௝݀௚௥ 

Fig. 3: The left figure shows the first two geometric parameters. The right
figure shows a situation where the parameter ζj = 1 for the grid-points
which lie above the obstacle (red-triangle) and to left of the red-line.

dgr
j /(2||z0a − zg||2), where dgr

j = ||zg − lj ||2 and z0a is
the robot’s location at t = 0. Fig. 3 (left) depicts these
parameters. The third parameter (ζj) is a Boolean variable.
ζj = 1 if a line-segment between the jth grid-point and the
robot’s current location (zta) intersects any finite obstacle;
ζj = 0 otherwise. It effectively determines the regions hidden
from the robot’s view — thus classifying the potentially
unsafe regions (Fig. 3, right). The RL agent (as discussed
in the following section) gets a large negative reward for
selecting the grid-points with ζj = 1 as the waypoints.

C. Feature Space, Value Function and Reward Function
Once the parameters are computed, state-action features

are computed for the RL agent. The robot’s current location
represents state of the RL agent at time-step t, while an
action corresponds to selecting one of the grid-points as
the waypoint. After the waypoint is selected, it becomes
the current goal for ECAN, which then moves the robot a
certain distance ∆s (if the environment is uncertain) or to the
waypoint (if the obstacles in the FOV are known to be static).
The entire algorithm is then iterated. The ∆s = min(δ1, δ2),
where δ1 is arbitrarily fixed and δ2 is computed, with
constraint that the robot remains inside Ψt, using quadratic
programming (see [4]). The robot may not actually navigate
to the location suggested by the current action (waypoint) of
the RL agent — an action may be only partially executed.
The resulting formulation may violate the Markov property,
however, it is treated here as an MDP. The state-action
feature vector corresponding to the jth grid-point is computed
as: Φj = [1, 2S(ρgr

j ), cos (θ
gr
j ) exp(−ρ

gr
j ), Vj , ζj ]

T , where
S(x) represents the sigmoid function of x ∈ R. The RL
agent’s policy is then learned using reinforcement learning
(sarsa), with an appropriate reward function.

Reward Function: The reward function is designed such
that it penalizes the RL agent for generating the waypoints
in obstructed regions of the FOV (ζj = 1) or close to the
boundary of obstacles (measured by the grid-point’s value
in the potential map). If the RL agent selects the goal
location zg as the waypoint, it gets a large positive reward.
For selecting the jth grid-point as the waypoint, RL agent
receives a reward:

r = −103ζj − α1Vj +max{α2500,−5}.

α2 = 1 if the waypoint is defined at the goal zg, and −1
otherwise. The max function respectively returns +500 when
the waypoint is at the goal and −5 otherwise, encouraging
the RL agent to reach the goal in minimum possible waypoint
iterations2. α1 is a constant that controls penalty for defining
waypoints close to obstacles.

2We use number of waypoint iterations (or simply, iterations) in our
experiments to measure the performance of a policy.
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Fig. 4: Finite robot models: (a) upper- UGV with x-axis as the direction of
motion; lower- UAV; (b) dimensions of UAV with the help of grid markings.

IV. EXPERIMENTS

AWGS is evaluated with three categories of experiments
showing: (i) domain, robot, and space independent way-
point generation; (ii) a comparison of the performance of
optimal policies with RRTs and A⋆; and (iii) the planning
capabilities in unknown complex 2D- and 3D-space. The
finite robot models used in the experiments are depicted in
Fig. 4. The default values of parameters are: ⟨δ1, α1⟩ =
⟨1, 200⟩; ⟨RFOV, dr, ϕFOV, dϕ, σ

2⟩ = ⟨5, 0.2, 40◦, 2◦, 0.5⟩;
⟨θFOV, dθ⟩ = ⟨60◦, 1◦⟩ for 2D and ⟨40◦, 2◦⟩ for 3D; ⟨α, β⟩ =
⟨0.1, 5×10−4⟩ in 2D and ⟨0.1, 10−4⟩ in 3D (trade-off param-
eters in the SDP in ECAN); and learning rate in SARSA [3]
is 0.01 with discount factor 0.9. A⋆ was implemented in 2D
domains by discretizing the domains in 500×500 grid-cells.

A. Robot-Model Independence and Policy Evaluation

These experiments show that the RL agent’s policy is
independent of the specific robot model, e.g., dimensionally
different robots and FOV. The RL agent is first trained for
a point-robot with default FOV parameters. 120 training
episodes in the domain of Fig. 7a are used with 50 to
400 random point obstacles. An episode ends when the
robot reaches the goal, or the number of waypoint iterations
exceeds 200. This policy is then used as an initial policy
while training the RL agent on a (2D-) finite robot (Fig. 4,
UGV) with θFOV = 80◦. Also, the RL agent learns a new
policy for the finite robot from scratch. After every 5 training
episodes, both policies are tested in the domain shown in
Fig. 7a, with 100 random point obstacles, in 10 different
start-goal configurations. In this experiment, obstacles in
the FOV are assumed to be static — once the RL agent
generates a waypoint, robot reaches it using ECAN, and
then the next waypoint is generated. Fig. 5a – 5c show the
planning results when learning with point-robot’s policy as
the initial policy (transfer) and when learning from scratch.
Navigation to the goal is considered successful if the robot
reaches it without colliding with any obstacle and using at
most 200 waypoint iterations. If the robot collides with an
obstacle, the path-length for that navigation problem is set
to 500 and number of iterations is set to 200. Fig. 5a shows
the average path-length, averaged over 10 start-goal con-
figurations. Fig. 5b shows the average number of waypoint
iterations required to reach the goal and Fig. 5c shows the
probability of success, after every 5 training episodes, in 10

different start-goal configurations (i.e., this graph displays
the number of experiments in which the robot reached the
goal without collision and without violating the 200 iterations
limit). These experiments show that the RL agent’s policy is
independent of the robot-model and FOV — re-learning for
the finite-robot with the point-robot’s policy (transfer) does
not show any improvement. Additionally, the performance
of learning from scratch converges to the performance of the
point-robot’s policy, requiring at least 100 training episodes.

To evaluate the performance of RL agent’s optimal policy
learned in this domain, the average path-length, over 10 start-
goal configurations, produced by RRTs and A⋆ are shown in
Fig. 5a. In each of the 10 start-goal configurations, RRTs
were run 50 times with 105 RRT-iterations in each run,
producing trees with an average of 75000 edges, in each of
the 10 configurations. As shown, the average path-length in
10 start-goal configurations is smaller for AWGS which plans
in unknown environments, as compared to RRTs exploring
the entire environment. However, the paths are longer than
the global A⋆ search. Average path-length in each of the 10
configurations is also shown in Fig. 6 (left).

B. Domain Independence and Policy Evaluation

Navigation in unknown environments requires the MDP
to be domain independent. Experiments in this section show
that the RL agent learns a domain-independent policy to
generate waypoints. Since the RL agent’s policy is robot-
independent, the point-robot’s policy learned for the domain
in Fig. 7a is used as an initial policy for re-learning (transfer)
in the domain of Fig. 7b, for the finite-robot. Also, a new
policy is learned from scratch in this domain to compare how
well the transferred policy performs in this new domain. The
environment is again assumed static — the next waypoint
is generated only when robot reaches the current waypoint,
using ECAN. Fig. 5d – 5f compare the performance of learn-
ing with transfer and learning from scratch. Both policies are
tested after every 5 training episodes, in 15 different start-
goal configurations. The policy learned for the domain in
Fig. 7a performs optimally in the new domain with non-
convex obstacles even without any training. The new policy
learned from scratch takes 100 training episodes for a similar
performance, and converges to that performance — showing
that the initial transfer policy is optimal. Thus, learning is
domain-independent — enabling AWGS to plan in unknown
environments.

Again the performance of transferred policy (which is
optimal for the RL agent) is evaluated with RRTs and A⋆.
Fig. 5d shows the average path-length over 15 start-goal
configurations for RRTs and A⋆. Again the AWGS produces
shorter paths as compared to RRTs but longer than A⋆.
Also, the length of the paths produced by AWGS, RRTs
and A⋆ in each of the 15 configurations is shown in Fig. 6
(right). The average for RRTs was again taken over 50
trials in each configuration, with 105 RRT-iterations in each
trial, producing trees with an average of 68550 edges in
each configuration. The paths produced by AWGS are again
shorter than RRTs (for all but one configuration) even when
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Fig. 5: a–c empirically show that 1) the RL agent’s policy is robot-model independent and can be reused for dimensionally different robots and FOV, and
2) the learned policy produces paths shorter than RRTs and longer than A⋆. d–f show that the RL agent performs optimally in novel domain without any
retraining and that the performance remains constant during additional training. The learned policy again produces shorter paths than RRTs, but produces
longer path than A⋆. g–i show that 1) the 2D-space policy performs optimally in 3D-space even with no training in 3D and 2) learning from scratch
converges to the same performance.
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Fig. 6: Comparison of average path-length produced by RRTs, AWGS and
A⋆ in each of the 10 and 15 configurations in convex (left) and non-convex
(right) domains respectively.

planning in unknown environment, while RRTs explore the
entire environment.

C. Space Independence

This section experimentally shows that the RL agent’s
MDP is independent of the space-dimensionality, e.g., train-
ing in 2D-space and planning in 3D-space without training
from 3D-samples. As in previous experiments, two policies
are learned: (i) transfer-policy: learning with 3D-samples
using the 2D-space policy as an initial policy and (ii)
scratch-policy: learning from scratch with 3D-samples, for
the UAV (Fig. 4). Since the RL agent’s policy is environment
independent, the test and the training environments are the
same. Episodes are defined in the same way as in previous
two experiments. After every 5 training episodes, both the
policies are tested in the domain shown in Fig. 8, with
15 different start-goal configurations and with 100 random
point obstacles. The 2D-space policy was learned in Fig. 7b
domain for 200-episodes, with 50 to 1000 random point
obstacles. As shown in Fig. 5g – 5i, the transfer-policy per-
forms optimally without any 3D training, while the scratch-
policy requires 20-episodes to start reaching the goal (Fig. 5i)
and at least 210-episodes to approximate the performance
of transfer-policy. Additional training after transfer does

not improve the policy’s performance. The performance of
learning from scratch again converges to the performance of
transfer — the initial 2D-space policy performs optimally.

D. Planning in 2D: Convex and Non-Convex Obstacles

This section shows sample planning results and compares
the performance of AWGS (using ECAN as planner) with
ECAN to show that AWGS can overcome the shortcom-
ings of a planner. Fig. 7a shows the sample trajectories
planned on-line by AWGS, with finite-robot and with ∆s =
min(δ1, δ2)

3, in a cluttered environment with convex obsta-
cles and 401 random point obstacles. The robot’s FOV is
also shown for comparison. AWGS successfully navigates
the robot to the goal(s), with RL agent defining the way-
points and convex constraints in ECAN ensuring collision
avoidance for the finite-robot. Fig. 7b shows navigation with
AWGS in a domain cluttered with non-convex obstacles.
AWGS successfully avoids the traps in between the obstacles.

Both AWGS and ECAN alone were tested in 100 different
start-goal configurations in Fig. 7b. AWGS successfully
reached the goal in all runs, while ECAN failed to reach the
goal because the ellipsoid always points towards the goal
and the robot gets trapped in the concavity of obstacles.
These experiments show that AWGS can successfully plan
in unknown environments cluttered with convex or non-
convex obstacles even when underlying planner is prone to
local oscillations among non-convex obstacles. Also, AWGS
avoids getting trapped in the concavity of obstacles even
when the potential map, one of the features in the RL agent’s

3Once the waypoint is selected by the RL agent, ECAN plans the path to
navigate the robot by a distance ∆s and then a new waypoint is generated.
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Fig. 7: (a) Sample trajectories to 4 different goals with finite robot model, (b) planning in unknown environment cluttered with non-convex obstacles;
robot’s FOV also shown for comparison, and (c) UAV navigating in between convex obstacles (left) and a zoomed figure (right), depicting UAV clearly.
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Fig. 8: Showing sample trajectories (left) planned in 3D environment with
convex and non-convex obstacles along with projection on x-y (right) plane.

state-action feature vector, may succumb to local minima.
The geometric parameters help in goal-directed selection of
the waypoints and avoid these local minima.

E. 3D-Space Planning

This section shows successful planning with AWGS
(∆s = min(δ1, δ2)) in unknown 3D-spaces, in the presence
of both convex and non-convex obstacles. Fig. 7c shows on-
line planning for the UAV — the FOV parameters were
again set to defaults. AWGS successfully avoids collision
and plans directly with finite size UAV in 3D-space cluttered
with convex obstacles. Fig. 8 shows sample planning results
with AWGS in an environment cluttered with both convex
and non-convex 3D-obstacles.

Again, both AWGS and ECAN alone were tested in 100
different start-goal configurations in Fig. 8 domain. AWGS
successfully reached the goal in all 100 test cases, while
ECAN only succeeded in 36 test cases. ECAN easily gets
trapped in between the two non-convex obstacles, while
AWGS, due to waypoints, easily avoids getting trapped in
between the non-convex obstacles.

V. CONCLUSION, DISCUSSION AND FUTURE WORK

This paper presented a novel waypoint generation strat-
egy that facilitates navigation in unknown 2D- and 3D-
space. While the existing randomized planners plan once
the configuration of obstacles in the environment is known,
AWGS on the other hand requires no environment specific
information beyond the robot’s FOV and produces relatively
shorter paths. The waypoint generation is independent of
the robot models and space-dimensionality. This makes it
possible to learn the RL agent’s policy for any kind of robot

model and in either 2D- or 3D-space. Future work (i) will
present on-line non-holonomic motion planning in unknown
environments with AWGS, and (ii) involves implementation
of the AWGS on a quad-rotor flying robot and analysis of
the performance with noisy robot’s coordinate detection.

An implementation of AWGS in Python will be made
available at: http://www.searching-eye.com/awsf/
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Adaptive Person-Following Algorithm Based on Depth Images and

Mapping*

Guillaume Doisy1, Aleksandar Jevtić2, Eric Lucet2 and Yael Edan1

Abstract— Person following by a mobile autonomous robot
includes two tasks, person tracking and safe robot navigation.
Two person-following algorithms that use depth images from
a Microsoft Kinect sensor for person tracking are proposed.
The first one, the path-following algorithm, reproduces the
path of the person in the environment. The second one, the
adaptive algorithm, uses in addition a laser range finder for
localization and dynamically generates the robot’s path inside
a pre-mapped environment, taking into account the obstacles
locations. The Kinect was mounted on a pan-tilt mechanism
to allow continuous person tracking while the robot followed
the generated path. The two algorithms were tested and their
performance compared in a series of trials where the robot had
to follow a person walking in an environment with obstacles.
With both algorithms the robot could perform continuous
person tracking when the obstacles were lower than the height
of the camera mount. With the adaptive algorithm the distance
travelled by the robot was 29.6% shorter than with the path-
following algorithm; however the path-following algorithm does
not require a pre-build map of the environment.

I. INTRODUCTION

Person following for mobile robots is advantageous in

applications that require close human-robot interaction. In

some applications, such as for a robot companion, having

this feature is very important. There are many challenges in

development of efficient and human-like person following

robot behaviour, e.g., safety of humans and robots, user

acceptance or ethical issues.

Person following consists of two tasks, namely person

tracking and robot navigation. In real-world applications

the person-following algorithms must take into account the

environment constraints. For indoor applications mapping the

environment allows safer and more efficient robot navigation,

but often it must also consider the movement of objects

and other people. In such situations, the person-following

behavior must be adaptive so the robot can update the path

to the desired destination point taking into account the new

constraints.

Person detection and tracking is the first necessary step in

the person following task. Many proposed person-following

algorithms use vision as input [1], [2]. Measurements from

*This research was supported by the FP7 EU-funded ITN in the Marie-
Curie People Programme: INTRO, grant agreement no. 238486, and par-
tially supported by the Paul Ivanier Center for Robotics Research and
Production Management, and by the Rabbi W. Gunther Plaut Chair in
Manufacturing Engineering, Ben-Gurion University of the Negev.

1G. Doisy and Y. Edan are with the Department of Industrial Engineering
and Management, Ben-Gurion University of the Negev, Beer Sheva 8410,
Israel doisyg@post.bgu.ac.il, yael@bgu.ac.il

2A. Jevtić and E. Lucet are with Robosoft, Technopole
d’Izarbel, F-64210, Bidart, France {aleksandar.jevtic,
eric.lucet}@robosoft.fr

a laser range finder (LRF) can be used to extract the

patterns of the person’s legs [3]; however, similar patterns

can represent chairs and tables which makes correct detection

difficult. To improve the tracking performance some authors

proposed fusion of LRF with infrared camera [4] or with

omnidirectional camera [5].

Depth images have been used for visual tracking [6]. They

provide information about the distance of the objects in the

image. Detection results can be improved through fusion

with measurements from other sensors [7] or they can be

compared with the stored templates in a pre-built knowledge

base [8]. Some methods propose using input from multiple

cameras [9], [10].

Recently released Microsoft Kinect sensor is a low-cost

and efficient alternative for depth image-based person track-

ing [11], [12]. Many research groups reported their activity

in working on Kinect features, but few have published their

results on applications to person tracking [10], [13], SLAM

[14], or improved environment mapping [15].

Person following with a mobile robot must first include

person detection and tracking. Further, robot navigation and

path generation are applied. The initiation of these tasks can

be human-operated or autonomous [16]. Various methods

for person-following propose using LRF measurements for

person legs detection [17], [3]; however, detected patterns

are easily confused with tables and chairs, or other people’s

legs. Color and texture of the person’s clothes were used

for vision-based tracking and following in [18], [19]. Fusion

of LRF and vision-based sensors showed improved person

detection [20], [21], [22], [23]. Some authors proposed

combining vision-based detection with RFID tracking [24],

[25].

A person-following algorithm based on direction following

was proposed in [26]. The input from a pair of stereo cameras

was used to combine feature detection with pre-built motion

models. Another method for robot motion planning based on

the learned human motion patterns was proposed in [27].

Mapping of the environment in which the robot operates

can simplify the motion-planning task [28]. Mapping and

SLAM for mobile robots is a vast field of study [29].

Numerous methods have been proposed based on the input

from LRF [30], vision-based sensors [31], 3D images [32],

[14], time-of-flight cameras [33], etc. In this paper, path

planning using a pre-built map is proposed. This method is

compared with a method that does not benefit from mapping,

and shows how mapping can allow the robot to adapt to the

distribution of obstacles.

Workshop on Robot Motion Planning: 
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012

43



II. METHODOLOGY

A. Algorithms

Two person-following algorithms are developed and com-

pared: a path-following algorithm and an adaptive algorithm.

These two algorithms use other algorithms to control the

robot and to track the position of the person and estimate its

position (described in Section III).

B. Hardware

The two algorithms were implemented on a generic dif-

ferential drive mobile platform with two propulsive wheels

and two castor wheels, which comes with basic navigation

functions (Robosoft robuLAB10 robotic platform). The robu-

LAB10 was customized with a rigid structure including three

tubes and a tray for laptop PC (Figure 1). On the top of this

structure a TRACLabs Biclops pan-tilt mechanism (PT-M)

and a Kinect sensor were added. For navigation purposes, the

base is equipped with a SICK S300 LRF, which is positioned

at the height of 0.24m and provides distance measurements

of up to 30m in an angular field of view of 270◦.

The pan-tilt mechanism has a tilt range of 120◦ and a pan

range of 360◦ with a maximum angular velocity of 170◦/s
and a maximum angular acceleration of 3000◦/s2. The

precision of the angular position measurements is ±0.01◦.

The mechanism can support a maximum payload of 4kg
which is more than the weight of the Kinect sensor. In all

experiments, the tilt value was set to 0◦ and person tracking

was performed only in the horizontal plane, using the pan

axis of the pan-tilt mechanism only. The communication

between the laptop PC and the mechanism is maintained

via a USB port with a data transfer rate of up to 416kbps.

Fig. 1. RobuLAB10 robotic platform with Biclops pan-tilt mechanism,
Kinect sensor, and laptop PC.

The Kinect sensor is equipped with an infrared light

projector, a depth sensor, a RGB camera, and a multi-array

microphone. It also has a motorized tilt that was disabled

and was used only for sensor positioning. The depth sensor

range is from 0.8m to 6m with the vertical viewing angle of

43◦ and horizontal viewing angle of 57◦. It provides depth

images at the resolution of 640× 480 pixels at the maximal

frame rate of 30fps. The Microsoft Kinect SDK provides

person detection and person joints position tracking features

up to 4m.

C. Experimental setup

Two sets of experiment were conducted. The first set

focused on the performance evaluation of the path-following

person following algorithm and the second set focused on the

adaptive person following algorithm. In all experiments, the

person was instructed not to assist the robot and to walk at a

constant speed along a marked path on the ground, regardless

of the robot’s tracking and/or following performance. This

marked path on the ground makes the person travel around

obstacles as seen in Figure 3 and 4.

D. Performance analysis

The following performance metrics were used for each

trial of each experimental setups to evaluate the proposed

person-following algorithms: 1) Path-completion ratio: the

length of the ground path from the person start point to the

closest point of the robot end point, divided by the total

length of the ground path, 2) Number of loss-of-track events:

number of events when tracking of the person was lost in

a single trial; loss of tracking is defined when no position

estimation is provided by the Kinect SDK for a period longer

than 500ms, and 3) Robot path length to person path length

ratio: the distance travelled by the robot divided by the

distance travelled by the person.

For each set of experiment, 10 trials were conducted. For

the path-following algorithm evaluation, the error between

the person’s path and robot’s path was computed in addition

to the metrics described above. This path error is calculated

by resampling robot path data to regular space interval of

1cm and calculating for each resampled point of the robot

path the closest distance to the ground path followed by the

person.

III. ALGORITHMS

A. Robot control

The robuLAB10 platform uses Robosoft robuBOX open

source library. The robuBOX is based on the Microsoft

Robotics Developer Studio (MRDS) and written in C#. Its

most important component is the Core, which contains the

definitions of robots actuators and sensors. All other com-

ponents interact through these definitions either by imple-

menting or using them. For robot navigation four robuBOX

features were exploited, namely the obstacle collision de-

tection, the localization, the differential-drive controller and

the path follower. The localization component uses odometry

from the wheels to estimate its position and readings from

a LRF continuously correct the odometry error if a map of

the environment is available.

The obstacle collision detection feature uses the LRF

distance measurements and applies two parameters to control

the robot’s motion. At distances between 0.3m and 1m from

an obstacle the robot speed is reduced proportionally to the

distance value. The robot is finally stopped at the distance of

0.3m from the obstacle. The distances are calculated within
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the robot frame with its origin in the point Pm located at

mid-distance of the actuated wheels.

The differential-drive controller is used to set robot’s linear

and angular speeds. The wheels’ velocities are derived from

these values by the robot’s low-level controller.

The path follower feature allows the robot to follow a

list of path points that are added to the buffer and executed

sequentially. The path follower implements Morin-Samson’s

path following with no orientation control [34]. We consider

a path C in the plane of motion, as illustrated on Figure 2.

Let us define three frames F0, Fm, and Fs, as follows. F0 =
{0,

−→
i ,

−→
j } is a fixed global frame, Fm = {Pm,

−→
im,

−→
jm} is a

frame attached to the mobile robot with its origin in the point

Pm, and Fs = {Ps,
−→
is ,

−→
js }, which is indexed by the path’s

curvilinear abscissas, is such that the unit vector
−→
is tangents

C. The control point P is attached to the robot chassis, with

the coordinates (l1, l2) expressed in the basis of Fm. In the

experiments the following values were set: l1 = 0.15m and

l2 = 0.

Fig. 2. Representation of the path in the robot motion plane. (Morin &
Samson, 2008)

To determine the equations of motion of P with respect to

the path C let us define d as the distance between P and C,

and θe = θm − θs as the angle characterizing the orientation

of the robot chassis with respect to the frame Fs. Where

θm is the orientation of the robot chassis in the global frame

F0.The control objective is to stabilize the distance d at zero.

For that, the following feedback control law was applied:

u2 = u1

(

tan θe
l1

− k0 · d

)

(1)

where u1 and u2 represent the intensities of the robot’s

longitudinal and angular velocity, respectively, and k0 is a

constant. The detailed proof that d exponentially converges to

zero when u1 is constant and θe ∈ (−π/2, π/2) can be found

in (Morin & Samson, 2008). The following values were set

to u1 = 0.5m/s and k0 = 20. As a measure of precaution,

the maximal heading error was set to θe,max = 60◦, which

initiates a recovery procedure that stops the robot and sends

it to the last path point in the buffer.

B. Person tracking and position estimation

Tracking of person’s skeleton joints is performed for each

depth-image frame in the Kinect SDK, using no temporal

information [12]. The algorithm uses the variation in depth

to find different body parts and applies Random Decision

Forests to compute estimated joint positions. It is also able to

distinguish between two different persons. The 3D position

of the head joint outputted by the algorithm was used to

estimate the ground X and Y position of the person. This

allows keeping track of the person position in presence of

obstacles small in height causing an occlusion of the lower

body parts. The outputted person ground position estimation

is in the frame of reference of the Kinect sensor. It must

be converted in the global frame of reference in order to be

used by the path-following algorithm.

To calculate the position estimation in the global frame

three direct orthonormal frames of reference were consid-

ered:

1) The fixed global frame F0 = {0,
−→
i0 ,

−→
j0}.

2) The frame attached to the robot Fm = {Pm,
−→
im,

−→
jm}.

Pm is at the center of the robot and both
−→
im and

−→
jm are

in the horizontal plane;
−→
im is pointing in the forward

direction of the robot.

3) The frame attached to the Kinect sensor Fk =
{Pk,

−→
ik ,

−→
jk}. Pk is at the center of the Kinect sensor

and both
−→
ik and

−→
jk are in the horizontal plane;

−→
ik is

pointing in the forward direction of the sensor.

Pm in F0, denoted Pm(F0), and the angle between
−→
i

and
−→
im, denoted θm(F0), are known from odometry. Pk in

Fm, denoted Pk(Fm), is known from the hardware con-

figuration of the robot: Pk(Fm) = (−0.08, 0). The an-

gle between
−→
im and

−→
ik , denoted θk(Fm), is given by the

pan axis position measurement of the pan-tilt mechanism.

The position of the person in Fk, denoted Person(Fk) =
(XPerson(Fk), YPerson(Fk)) is given by the output of the

Kinect sensor. The angle between the forward direction of

the Kinect sensor,
−→
ik , and the person, denoted θPerson(Fk),

can be calculated:

ΘPerson(Fk) = tan

(

YPerson(Fk)

XPerson(Fk)

)

(2)

The position of the person in Fm, denoted Person(Fm) =
(XPerson(Fm), YPerson(Fm)) can be calculated:

(3)

Person(Fm) = Person(Fk) ∗
(

cos
(

θk(Fm)

)

sin
(

θk(Fm)

)

− sin
(

θk(Fm)

)

cos
(

θk(Fm)

)

)

+

Pk(Fm)

The angle between the forward direction of the robot,
−→
im,

and the person, denoted θPerson(Fm), can be calculated:

ΘPerson(Fm) = tan

(

YPerson(Fm)

XPerson(Fm)

)

(4)

Finally, the position of the person in F0, denoted

Person(F0) = (XPerson(F0), YPerson(F0)), can be calcu-

lated:

(5)

Person(F0) = Person(Fm) ∗
(

cos
(

θm(F0)

)

sin
(

θm(F0)

)

− sin
(

θm(F0)

)

cos
(

θm(F0)

)

)

+

Pm(F0)
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C. Pan-tilt mechanism control

In order to make the Kinect sensor always point in the

direction of the person tracked, a control law of the pan axis

of the pan-tilt mechanism was developed. The output of this

control law is an angular speed command of the pan axis,

denoted θ̇k(Fm)(Command).

A first approach to compute the speed command was to

implement a P-controller using the angular position of the

person in the Kinect frame, θPerson(Fk), as the measurement

and a 0◦ angle as the target, θPerson(Fk)(Target).

θ̇k(Fm)(P−control) = Kp(Pan) · error

= Kp(Pan) ·
(

θPerson(Fk)(Target) − θPerson(Fk)

)

(6)

θPerson(Fk) is given by equation (2) and

θPerson(Fk)(Target) = 0◦.

Then the angular speed command is set equal to the output

of the P-controller:

θ̇k(Fm)(Command) = θ̇k(Fm)(P−control) (7)

We used Kp(Pan) = 4 s−1. This first approach using

equation (6) for computing the speed command is able to

maintain the sensor in the direction of the tracked person

when the robot is not moving. However, when the robot is

moving, the system is not reactive enough to keep track of the

person. Loss of tracking happens when the robot is rotating

or turning. To compensate for the robot rotation, a second ap-

proach was developed. Information from the odometry pose

estimation is used to calculate the angular speed of the robot

in F0, denoted θ̇m(F0), from two successive measurements

of the robot orientation in the global frame: θm(F0)(t−1) and

θm(F0)(t).

θ̇m(F0) =
θm(F0)(t) − θm(F0)(t−1)

T (t)− T (t− 1)
(8)

where T (t) and T (t − 1) are the time of the current

measurement of angular speed and the time of the previous

measurement of angular speed, respectively.

Using the additive inverse of the angular speed yields a

robot rotation compensation speed command.

Finally, the speed command to send to the pan axis of the

pan-tilt mechanism is calculated by summing the output of

the P-controller and the robot rotation compensation speed

command:

(9)
θ̇k(Fm)(Command) = θ̇k(Fm)(P−control) +

θ̇k(Fm)(Counter−rotation)

This approach using equation (9) is the one used in this

work.

This algorithm requires an estimation of the person posi-

tion. In case of a loss of tracking, the recovery procedure

continues to apply the last pan axis speed command for

500 ms and then setting the pan axis to its neutral position,

θk(Fm) = 0◦, while waiting for a new person position

estimation.

D. Path-following algorithm

The principle of the path following algorithm is to make

the robot take the same path as the person it follows. It

uses the succession of person position estimations in F0,

denoted Person(F0), and is calculated from equation (5), to

generate a set of points to send to the robot path follower

previously described in the robot control section. However,

the Person(F0) points cannot be directly sent to the robot

path follower. They are too noisy when the robot is moving,

as described in the experimental results.

Hence the Person(F0) points are first filtered:

• Points which imply that the person accelerates faster

than 1 g are ignored.

• Points which imply that the person moves faster than

1.5m/s are ignored.

• Jitter reduction of 15cm radius is applied: if a point

is not farther than 15cm from the previous point, it is

ignored.

Then the path connecting the succession of points is

smoothed using a moving average technique of span 5.

Finally, as the robot path follower needs a path with points

separated by an interval of 2cm to properly work, points

are interpolated by using uniform cubic B-splines. This

also ensures further smoothing of the path. After filter-

ing, smoothing and interpolation, the output point, denoted

Person(F0)(Filtered) is sent to the robot path follower.

E. Adaptive algorithm

The idea of the adaptive algorithm is to continuously re-

compute the best path for the robot to go to the person

taking into account the obstacles in the environment. Hence,

if a shorter way than the path the person took to go to

its current position exists, the robot will be able to use it.

The optimal path is computed using an implementation of

the Karto library which uses the Monte Carlo Localization

algorithm [35].

The adaptive algorithm uses the filtered and smoothed

person position estimation, Person(F0)(Filtered), described

in the previous section. Each time a position estimation is

received, it is compared to the last position estimation used to

generate the robot path. If the distance that separates these

two position estimations is superior to 50 cm, a new path

using the last position estimation is computed and sent to

the robot. This approach is needed in order to limit the

frequency of the re-computation of the path which, when too

high, saturates the computer and makes the robot oscillate

and change its course too often.

IV. RESULTS AND DISCUSSION

A. Path-following algorithm

For each of the 10 trials the robot was able to follow the

person until the end of the path (Table I). The average 0.9

loss-of-track event per trial did not affect the performance of

the following thanks to the efficiency of the tracking recovery

procedure. Figure 3 illustrates this success and shows both
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Fig. 3. Person and robot paths of a sample trial of the evaluation of the
path-following algorithm. TABLE I

EXPERIMENTAL RESULTS OF THE EVALUATION OF THE

PATH-FOLLOWING ALGORITHM

Path-following algo-
rithm

Average Max Min Standard Deviation

Path-completion suc-
cess ratio [%]

100 100 100 0

Number of loss-of-
track events per trial

0.9 2 0 0.88

Robot path length to
person path length ra-
tio [%]

100.5 103.7 97.6 1.6

Path Error [cm] 11.04 40.27 0 7.64

robot and person path close from each other along with the

obstacle setups from a typical trial.

The path taken by the person is reproduced accurately

with an average path error of 11.04 cm, a standard deviation

of 7.34 cm and a maximum error of 40.27 cm (Table I).

The agility and accuracy of this method are fully understood

when comparing the results with the 40 cm width of our

robot. Thanks to this accuracy it is possible to perform person

following in an environment with obstacles without the need

of detecting and actively avoid the obstacles.

However, when comparing the distance covered by the

human and the robot it appears that they are nearly the same.

This is due to the principle of this algorithm: the path taken

by the person is accurately followed and hence is not optimal;

in case of a possible shorter path, it will not be taken by the

robot.

B. Adaptive algorithm

In term of path-completion ratio the adaptive algorithm

performed as good as the path-following algorithm with a

100% completion for all the trials; and similarly it was not

affected by the nearly same average 1.1 loss-of-track event

per trial. Figure 4 illustrates this success but shows also how

the adaptive algorithm enables the robot to take a shorter path

when it can. Over the 10 trials the distance travelled by the

robot was 70.9% of the distance travelled by the person, with

a maximum of 82.1%, a minimum of 57.6% and a standard

deviation of 6.5%.

Hence, the adaptive algorithm presents the advantage of

minimizing the distance travelled by the robot compared to

Fig. 4. Person and robot paths of a sample trial of the evaluation of the
path-following algorithm. TABLE II

EXPERIMENTAL RESULTS OF THE EVALUATION OF THE ADAPTIVE

ALGORITHM

Adaptive algorithm Average Max Min Standard Deviation

Path-completion suc-
cess ratio [%]

100 100 100 0

Number of loss-of-
track events per trial

1.1 3 0 1.1

Robot path length to
person path length ra-
tio [%]

70.9 82.1 57.6 6.5

the path-following algorithm. However, this requires a pre-

build map of the environment.

V. CONCLUSIONS AND FUTURE WORK

Two person-following algorithms that use depth infor-

mation from a Kinect sensor were presented. Both use

the Kinect sensor mounted on a pan-tilt mechanism for

360-angle tracking and implement path generation from a

sequence of estimated person’s positions. The path following

algorithm generates sequentially a path that reproduces the

path taken by the person using each new updated position

of the person. On the other hand, the adaptive algorithm, re-

computes from scratch the shortest path to the person each

time the person has moved more than 50 cm. Both person-

following algorithms were equally successful in following

the person with a 100% path completion ratio. However,

the adaptive algorithm minimized the distance travelled by

the robot: it travelled in average 29.1% less than the person

it followed whereas the path-following algorithm made the

robot travel in average 0.5% more. Yet which algorithm is

best to use is subject to discussion. The adaptive algorithm

minimizes the distance travelled but presents the important

constraint of needing a-priori information about the environ-

ment (i.e. a map). This can be an advantage in situations

where the cost of travel of the robot is expensive or in

situations where the maximum speed of the robot is inferior

to the walking speed of the person followed.

Future work should focus on path optimization without

a-priori information. The case of the robot standing in the

way of the person was not investigated in this work. Hence

algorithms must be developed to adapt the path of the robot
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in order not to block the way of the person when she/he

changes suddenly of direction. Furthermore, strategies to

recover from complete occlusions from other persons or

walls should be improved.
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Collective Motion Pattern Scaling for
Improved Open-Loop Off-Road Navigation

Frank Hoeller, Timo Röhling, Markus Ducke, and Dirk Schulz

Abstract— This paper presents an adaptive navigation system
which is able to steer an electronically controlled ground vehicle
to given destinations while it adjusts to changing surface condi-
tions. The approach is designed for vehicles without a velocity
controlled drive-train, making it especially useful for typical
remote-controlled vehicles without upgraded motor controllers.
The vehicle is controlled by sets of commands, each set repre-
senting a specific maneuver. These sets are combined to form
trajectories towards a given destination. While one of these sets
of commands is executed the vehicle’s movement is measured to
refine the geometry of all maneuvers. A scaling vector is derived
from the changes in dimensions of the bounding boxes of the
assumed and the actual path, which is then used to collectively
update all known maneuvers. This enables the approach to
quickly adapt to surface alterations. We tested our approach
using a 300 kg Explosive Ordnance Disposal (EOD) robot in
an outdoor environment. The experiments confirmed that the
Collective Motion Pattern Scaling significantly increases the
adaptation performance compared to an approach without
collective scaling.

I. INTRODUCTION

In the design of robot systems operating in unstructured
outdoor environments special care has to be taken that the
robots do not accidentally collide with obstacles in their
vicinity. Compared to indoor situations the robot can suffer
drastically more damage from the more hazardous surround-
ings. The risk is increased by different ground surfaces,
which have a distinct effect on the wheel grip. The resulting
deviation has to be anticipated to ensure the reproducibility
of planned motions, and thus making collision avoidance
possible.

Additional complications arise for robots which were
designed for remote-control. Such robots are usually only
equipped with relatively simple motor controllers missing an
appropriate servo loop for interpreting velocity commands.
Unfortunately, this is a requirement for most classic naviga-
tion algorithms. Moreover, the impact of adhesion changes is
further intensified by such open-loop controllers because no
matter how much the wheel grip, and thus the behavior of the
robot changes, there is no feedback of the actual movement.
Of course, these problems could easily be solved by using
a wheel encoder or similar, but adding such to existing,
especially commercial robots is rarely possible. Mostly a
time-consuming redesign or an expensive new acquisition
are the only options.

In this article we present an approach, which allows a
mobile robot with any kind of electronic motor controller to

Frank Hoeller, Timo Röhling, Markus Ducke, and Dirk Schulz are with
the Fraunhofer Institute for Communication, Information Processing and
Ergonomics FKIE, Germany

Fig. 1. A Telerob Teodor robot equipped with sensors for basic autonomous
navigation.

operate in outdoor environments while adjusting to changing
surface conditions to provide safety and effectiveness. All
components of our system follow a local navigation paradigm
and do not need global information on the environment,
neither of surface characteristics nor on obstacles. Instead,
the system decides solely based on the robot’s sensory input.

The motion planning developed for our robot composes
paths by combining predefined Motion Patterns. Each Motion
Pattern consists of a set of robot commands and a series
of poses that represent the robot’s movement when the
command set is executed by the controllers. With these
Motion Patterns, the local navigation module repeatedly
computes trees of collision-free command sequences. From
each tree a path is extracted which brings the robot close to
the destination coordinate as fast as possible.

If one is able to measure the robot’s motion on the fly,
e.g using SLAM (simultaneous localization and mapping)
techniques or an INS (inertial navigation system), one can
also monitor movement trajectories. Compared to drive-trains
with servo loop that only regard the motor speeds, the
results of command sequences can be observed on a larger
scale, which allows to tackle the surface traction problem
in a novel way: The collected trajectory data is used to
update the previously measured movement trajectory of the
corresponding Motion Patterns. Furthermore, the detected
changes are propagated to all other Motion Patterns by
calculating a scaling vector from the alteration in dimensions
of a trajectory. The upgraded Motion Patterns are handed
over to the planning process and used for the tree generation
from then on. Note, that it is not possible to adapt the
command sequence to match the desired trajectory because
the mapping from trajectories to commands is unknown.

The remainder of this article is organized as follows: After
discussing related work in Section II, we introduce our Mo-
tion Pattern based local navigation approach in Section III,
followed by a description of the learning and collective
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scaling procedures in Section IV. Before we conclude, we
describe some experiments to illustrate the capabilities of
our approach. We implemented our approach on a Telerob
Teodor EOD robot (Fig. 1) and verified its feasibility in
outdoor settings.

II. RELATED WORK

In the field of outdoor robotics the terrain always is of
special interest. The analysis and classification of different
surfaces regarding their traversability has been addressed by
many different authors. The classification of the different
surface types using vibration sensors is very popular because
this sensing mode is not vulnerable to lighting or perspective
issues. Brooks et al. [1] attached this kind of sensor to
axle arms and classified different terrains by traversing
them. They used offline learning in combination with a
voting mechanism to enable the system to identify a set of
different surfaces. Unfortunately, classification approaches of
this type can only identify known terrains without deriving
information concerning the behavior of a vehicle on the
respective surface. The identified terrain type would have to
be associated with a parameter set for the trajectory generator
in an intermediate step. Furthermore, this would make the
navigation dependent on the a priori learned identification
data, which would violate the intended local navigation
paradigm.

The DARPA Grand Challenge winning robot Stanley [12]
also uses a vibration sensor to regulate its maximum speed.
Unwilling to catalog every possible terrain type, Stavens
et al. evaluate the occurring vibrations to limit Stanley’s
speed according to observed human driving behaviors [10].
A similar approach is presented by Castelnovi et al. [2], but
instead of sensing vibrations the authors used a 2D laser
range finder aimed downwards to calculate a ruggedness
grade. Based on this result the robot’s top speed is reduced,
resulting in a decreased number of terrain-related incidents.
A combined approach was later proposed by Stavens et
al. as an upgrade for Stanley’s system [11]. Here a learn-
ing component associates vibration intensities with surface
profiles measured with a forward-facing 3D laser distance
scanner. This way the system can automatically learn terrain-
speed-associations. Thus the maximum speed can be adjusted
before the vibration sensor detects a surface transition and
the vehicle is exposed to less shock. These approaches
show several similarities to the technique presented in this
paper as the analysis of the ground directly affects the
local navigation. Nevertheless, only the maximum translation
velocity is altered. Rotation velocities are not addressed at
all, which is not necessary for a robot like Stanley.

Another interesting approach by Martinelli et al. [5] also
uses laser range finders, but in combination with SLAM and
Kalman filter techniques. The system is able to determine
the systematic component of the odometry error by using
the wheel encoder readings and the estimated SLAM posi-
tion. The non-systematic error, which is more interesting in
outdoor applications, can also be determined by a Kalman
filter applied on a history of robot states. These are provided

by the former Kalman filter, making the estimation indirectly
dependent on wheel encoders and closed-loop control.

Crusher, a six-wheeled robot for extreme outdoor en-
vironments also suffered from trajectories differing from
planned paths. Seegmiller at al. proposed an approach to
automatically calibrate a dynamic model [9]. It linearizes
the nominal vehicle model and then calibrates the dynamics
to explain the observed prediction residuals using a Kalman
filter. Their system, just as our system, takes advantage
of the precise short-term localization techniques or sensors
available. Although results are impressive, their approach is
again tailored to a velocity driven model which unfortunately
is not applicable to our robot.

The combination of motion templates and learning has
been used widely in the area of walking robots. In this field,
learning techniques are mostly applied to improve walking
policies that were derived from simulations [6] or observed
from human walking [7]. Furthermore, due to the complexity
of biped locomotion, every walking robot is equipped with
many sensors to determine its stance and to allow closed-
loop control.

Similarly, the concept of motion template based learning
has also been employed to simplify the learning of complex
motions [8]. In contrast to our approach the templates are
parameterized, so they can be adjusted to fit the desired tra-
jectory. This implies a feasible correlation between parameter
input and drive-train behavior.

III. LOCAL NAVIGATION WITH
MOTION PATTERNS

The core of the overall approach is a local navigation
planning component that directly controls the robot and
steers it on a collision-free path from its current position to
a given destination in configuration space. For this purpose
special precautions for the open-loop motor controllers have
to be taken. Since remote-controlled robots lack a velocity
regulator circuit, the control commands influence the motor
power directly. This induces that their outcome depends
on many factors and is far too complex to compute in an
online approach. To make motion planning still possible,
we introduce Motion Patterns. The first component of a
Motion Pattern MP is a series of robot control commands
U = (u1, . . . , uT ). A command ut can be of any type and
dimension: when used with a Teodor robot they are motor
power commands, when controlling a car they probably are
throttle position and steering angle. A command sequence
U is immutable, which implies that Motion Patterns cannot
be parameterized e.g. regarding their velocity. The second
component of a Motion Pattern is an array of oriented relative
positions R = (∆r1, . . . ,∆rT ). It represents the trajectory
on which the robot would probably move when the command
series is sent to the robot, so each pose ∆rt describes the
relative position of the robot after it executed the command
sequence from u1 to ut. The Motion Patterns can now
be combined to form motion paths P = (R1, . . . , Rk).
Of course it has to be checked if concatenated Motion
Patterns fit together so that no harsh velocity change creates
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Fig. 2. A planning tree of collision free paths that has been build using
Motion Patterns in an 2-dimensional simulated environment.

unexpected movement trajectories. The created paths can
then be checked for collisions e.g. by using an occupancy
grid [4]. The corresponding sequence of series of commands
CP = (U1, . . . , Uk) can be merged to a large array of robot
commands which can be executed by the robot sequentially.
Notice that the number, shape, and complexity of Motion
Patterns are not restricted, but definitely have an impact on
the planning process. In general, with fewer patterns a larger
range can be covered, while more patterns increase the qual-
ity of the resulting paths. Since basic navigation capabilities
were sufficient for the following learning algorithm, a set of
five different Motion Patterns was used.

Based on the model above, we can now also build a
collision-free tree of Motion Patterns and extract the best
path towards the destination. The path planning process is
described in detail in [4] and an example tree generated
by this technique can be seen in Fig. 2. The theoretical
principles of a very similar navigation approach are examined
in [3] extensively.

IV. MOTION LEARNING USING COLLECTIVE
MOTION PATTERN SCALING

A problem arising from our kind of local navigation is its
sensitivity to surface and traction changes. Motion Patterns
are created for specific surfaces only. And it is unlikely
that the surface or the surface’s condition always remains
constant, especially in outdoor scenarios.

To compensate for this, the local navigation has been
extended by a learning mechanism. While the command
set of a selected Motion Pattern MP* is executed, the
robot’s reactions are measured. For this purpose the robot’s
movement trajectory M, consisting of the x, y and ϕ deltas, is
recorded. The saved trajectory RMP* inside the Motion Pattern
MP* can directly be updated with this updated measurement.
This technique was combined with an exponential smoothing
(see below) to form the first version of the learning Motion
Pattern based local navigation. The potential of this basic
system has been shown in [4]. Both learning approaches, the
basic version from [4] and the improved version discussed
here, as well as the planning mechanism assume, that applied
Motion Patterns yield in similar trajectories repeatedly. The
exponential smoothing can cope with singular discontinu-
ities, but it is not able to handle continuously changing
results, i.e. occuring on slopes or rough terrain. Both methods

are computationally simple and the calculation effort is
negligible compared to the time needed for path planning.

The trajectory update inside the Motion Pattern can be
regarded as information gain. We would like to propagate
this additional knowledge to all other Motion Patterns as
well to improve the adaption speed considerably. For this
purpose we calculate a vector of scaling factors V =
(xs, ys, ϕs)

T by comparing the recently measured trajectory
and the prediction RMP* saved inside the Motion Pattern MP*.
xs and ys regard the positions inside the trajectory, and ϕs

the trajectory’s yaw information. The first approach would
be to compare the final pose of the measured trajectory M
and the predicted trajectory from MP* to compute these
factors. Unfortunately, this would decrease the robustness
for trajectories which have a final lateral position close to its
initial value (e.g. double-lane change maneuvers). In these
cases, it is likely that the measurement noise exceeds the
position change, which would generate enormous scaling
factors. A similar problem occurs for patterns which only
include a movement in only one dimesion, e.g. forward
motions or in-place turns. Although these patterns can be
scaled, they cannot be used to calculate a reasonable scaling
vector V because their movement in the unaddressed axes is
only caused by noise and would again generate exaggerated
scaling factors. For this reason, patterns like these are taken
out of the learning process, because it is not possible to
gain information from something, that did not change. To
adresse the former case of this problem, the length and the
width of the bounding boxes (BB) around the two considered
trajectories are used to calculate the scaling factors xs and
ys. The yaw scaling factor ϕs is calculated similarly to the
position factor: here the interval between the minimum and
maximum of all recorded yaw angles is used. Now we can
compute a quotient for every dimension and compose the
scaling vector V :

V (M,MP*) =

 xs

ys

ϕs

 =


LengthBB(M)

LengthBB(MP∗)

WidthBB(M)
WidthBB(MP∗)

|AngleInterval(M)|
|AngleInterval(MP∗)|

 (1)

This vector can now be used to collectively scale all Motion
Patterns making it possible to update even yet unregarded
Motion Patterns. An example application is illustrated in
Fig. 3. In this manner the knowledge of change of movement
behavior is propagated without the need to wait for every
Motion Pattern to be chosen and executed, reducing the
adoption time notably.

In both cases, without and with Collective Motion Pat-
tern Scaling, the new predictions are integrated in the
Motions Patterns’ existing trajectory using a component-
by-component exponential smoothing function. This allows
continuous learning and at the same time smooths minor
surface variations to prevent an oscillating learning behavior:

Rp,t = (1− w)Mp,t + (w)Rp,t−1 (2)

with 0 ≤ w < 1. Here Mp,t is a new trajectory for a Motion
Pattern p at time t, measured or derived by collective scaling.
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1) 2) 3)

Fig. 3. Evolution of a Motion Pattern set with three patterns: 1) Initial
set before a Motion Pattern is chosen and executed. 2) After measuring a
Motion Pattern’s (MP*) result the bounding box changes are analyzed. 3)
All Motion Patterns are scaled yielding to a new set.

Rp,t−1 represents the existing prediction of the pattern and
Rp,t the updated prediction. To limit the impact of new
measurements w is introduced. Setting it to 0.5 turned out
to work fairly well. The whole learning approach is outlined
in Algorithm 1.

Algorithm 1 Collective Motion Pattern Scaling
1: while inMotion do
2: get next Motion Pattern MP from planner
3: send MP to motor controllers and record motion
4: let M be the recorded robot motion
5: calculate scaling vector V . see eqn (1)
6: UPDATEMOTIONPATTERN(MP, M)
7: for all other MotionPatterns do
8: UPDATEMOTIONPATTERN(MP, MP · V )
9: end for

10: end while

11: procedure UPDATEMOTIONPATTERN(mp, update)
12: let w be the impact reduction
13: mp← (1− w) ·mp + (w) · update . see eqn (2)
14: end procedure

The idea behind this mechanism is that changes in road
grip in general affect the forward and lateral movement
achieved when executing a command sequence, and that
these changes can be approximately captured by the bound-
ing box around the resulting trajectory. Although we dis-
regard it in our learning approach, there certainly is a
relation between the length and the width of a trajectory:
If the ground surface changes from a sticky to a slippery
nature, an executed turn would be wider than before. The
resulting bounding box of the trajectory would be longer
and correspondingly narrower. But to model this relation
more information about the shape of the trajectory would
be needed. By the nature of our approach, these are not
available, so further detailed analysis of the trajectory would
require more computational time, which at the moment is
beyond the time frame of our online application. Surface
transitions are likely to change also the orientation of the
robot while executing a Motion Pattern. To be able to predict
complete poses, the position scaling technique is reduced to
one dimension and applied again to the orientation values.
In a one-dimensional space a bonding box diminishes to an
interval enclosing all occurring yaw angles.

Although not required for the learning technique presented
here, it is reasonable that most sets of Motion Patterns
contain a number of symmetric patterns, e.g. a left and a
similar right turn. If one of these patterns is executed and
measured, a very precise prediction for the other is generated,
which lessens the error margin of the approximation and thus
increases the effectiveness of the collective scaling.

V. EXPERIMENTS

The system described in the previous chapters has been
tested in simulations but using data from a real robot. The
Collective Motion Pattern Scaling algorithm proposed here is
compared with its predecessor, whose performance is shown
in [4]. To demonstrate the performance of the learning and
prediction techniques a controlled environment is essential.
Although this might be realizable in simulations, the authors
have chosen a different approach.

A. Testing Approach

The following experiment aims at investigating the results
of the two mentioned algorithms on a transition from a
surface A to another surface B. To maximize the quantitative
outcome of the experiments the data acquisition was sepa-
rated from the algorithm tests. For this purpose, the different
surfaces were traversed separately to collect data sets for
each surface. Later, these sets are used in combination to
simulate surface transitions.

In the data collecting stage the robot executed a large
number of Motion Patterns on different ground surfaces,
one surface at a time. The driven trajectory of each Motion
Pattern was collected, resulting in a sample set RPS of 300
recordings per Motion Pattern for every considered surface
S. As preparation for the second stage a set of averaged
Motion Patterns is calculated from the 300 recordings for
each RPS . The result is a set of Motion Patterns IPS with
very precise trajectory predictions for the regarded surface
S. When reproducing a terrain change from a surface A to
a surface B, the set IPA is used as initial Motion Pattern
database representing the already learned surface type A.

For the next step a test sequence TS of Motion Patterns,
which is executed after the virtual terrain change, has to be
determined. To show the propagation capabilities, two se-
quences were chosen and are used alternately. Each sequence
consists of three turning patterns resulting in a left-left-right
and accordingly a right-right-left motion. Note that the left
and the right turn Motion Patterns roughly are mirrored
equivalents and have a total length of about a second. The
test sequence has to be compiled of turning patterns because
straight movements only allow one-dimensional corrections
(see Section IV). For each run of the test sequence the
initial Motion Pattern database IPA is used to create identical
starting conditions.

In the next step the test sequence TS is processed one
pattern after another. Before a Motion Pattern’s command
sequence is sent to a robot, the two algorithms to be tested
already have a prediction of the prospective trajectory. The
accuracy of these trajectories will be inspected. Instead of
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Fig. 4. Error developing of a Teodor robot changing from cinder to
grassland during an experiment with extended run-time.

sending the command sequence of each Motion Pattern to
a real robot and recording its motion anew, the pattern
is processed offline: In exchange for the online motion
recording, we use a random trajectory recording from the
initially measured collection of trajectories RPB of surface
B. The trajectory is given to the two algorithms to initiate
the learning process to update their predictions for the next
request. We assume that the trajectories recorded for a
pattern on one particular surface are exchangeable i.e. that
the trajectories are randomly distributed given a surface.
This allows us to do quantitative evaluations using sampling
techniques. Further, this enables us to easily process larger
numbers of test repetitions.

The processing of the test sequence is repeated 30,000
times. The random trajectories from RPB are chosen anew
every time, but in a fashion that both learning algorithms
receive the same data in every run. At the end of every pattern
of TS, the final position of the recording is compared with
the two position predictions provided by the two learning
algorithms.

A disadvantage of this simulation method is that surface
changes can only be simulated in between Motion Patterns,
which is unlikely to happen in the real world. But even in
the likely cases the learning mechanisms would adjust the
trajectory predictions in the right direction, still reducing
planning error margins. The learning process would only be
slowed down, and both algorithms would be affected in the
same way.

B. Testing Results

The input data for this simulation study was recorded using
a tracked Telerob Teodor EOD robot which was upgraded
with the required sensors to enable autonomous behavior. In
addition, an INS was installed to enable easy and precise
movement recordings. For the first phase of the experiment
the robot was operated on the following four surfaces to
collect the data for the sample sets RPS : tarmac, grassland,
chunky gravel, and volcanic cinder (commonly used for
soccer fields). During the experiment the robot always moved
at its maximum speed of about 1.0 m/s. The generated sample
sets were used to simulate all possible surface transitions.

Table I shows a comparison of four processing methods
including a naive and an omniscient policy: a) no learn-
ing while keeping the database, b) single pattern learning
from [4], c) learning with collective scaling, d) a priori
correctly chosen pattern database with learning deactivated
showing the minimal possible errors. The error reduction

percentages for the normal learning and the learning with
collective scaling are presented in Table II. As in the
simulated experiment, the reduction of the orientation error
is noticeably higher then the position error reduction. The
angular error reduction ranges from 7.3 % up to 27.9 % with
one exception that probably resulted from similar surface
properties. The position error reduction on the other hand
only reaches 17.8 % at best, but is normally below 10 %,
sometimes even negative. The measured orientation error
values are quite large, but it has to be kept in mind that
these are normalized. Just as the position error are scaled
with respect to the number of driven meters, the rotation
errors are scaled with respect to the covered angle. For the
patterns examined here the scaling factor is around 3.

Note that the position error reduction can artificially be
improved by increasing the pattern length, taking advantage
of the large orientation error reduction. When the pattern
length is doubled most of the negative position error reduc-
tions raise well above zero. To keep the results realistic, these
oversized patterns were not used.

Fig. 5 depicts the error distributions of the two tested
approaches when changing from cinder to grassland as an
example. The distribution of the position error is not as well
formed as the distribution of the angular errors, but still a
shift towards small errors can be seen. Most of the error
distributions of the other transitions with a crucial reduction
look similar.

Since both learning algorithms use the same exponential
smoothing function, both errors will correlate with the mini-
mal error if the experiment is continued long enough. Fig. 4
shows the error development of the two algorithms when
the chosen Motion Pattern sequence is processed repeatedly
without resetting the initial pattern database. Both algorithms
reach the minimal error during the extended time span, but
especially in the beginning the differences are very large.
This confirms that the beginning phase is crucial for a fast
adaption, and encourages the concentration on this phase.
The position error graph also reveals the reason for the
poorer performance of the position estimation: After reaching
a value of about 0.045 m, the error begins to oscillate in a
range of approx. 0.005 m. These 5 mm are the error caused
by the propagation of the Collective Motion Pattern Scaling.
At this point the algorithm has reached its highest absolute
accuracy; even when extending the Motion Pattern length,
the amplitude does not increase.

The long-term experiment also enables us to evaluate the
variance of the occurring errors. After the first three pat-
terns the standard deviation with collective scaling is higher
than the standard deviation of the simple learning method.
This is caused by the exponential smoothing: When it is
used, it intentionally prevents instant adaption and generates
intermediate trajectory predictions while converging towards
the measured behavior. When adding collective scaling, these
intermediate predictions appear more often due to the greater
number of adjusted Motion Patterns, especially immediately
after a surface transition. As soon as the adaption to a new
surface is completed, the deviation decreases and stays below
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TABLE I
RESULTS OF THE SIMULATIONS: POSITION (FIRST ROW) AND ORIENTATION (SECOND ROW) ERRORS OF ALL POSSIBLE TRANSITIONS. VALUES

DENOTE THE ERROR PER DRIVEN METER/RADIAN. A) NO LEARNING, B) SIMPLE LEARNING, C) COLLECTIVE SCALING, D) OMNISCIENT.

to cinder tarmac grassland gravel
from a) b) c) d) a) b) c) d) a) b) c) d) a) b) c) d)

cinder - - - - 0.043 0.043 0.042 0.035 0.087 0.077 0.063 0.039 0.063 0.061 0.058 0.046
- - - - 0.041 0.043 0.042 0.037 0.271 0.226 0.162 0.067 0.164 0.147 0.126 0.099

tarmac 0.059 0.055 0.056 0.041 - - - - 0.060 0.057 0.051 0.039 0.054 0.054 0.057 0.046
0.107 0.100 0.091 0.030 - - - - 0.204 0.172 0.129 0.067 0.113 0.111 0.109 0.099

grass 0.108 0.093 0.085 0.041 0.071 0.064 0.060 0.035 - - - - 0.063 0.060 0.059 0.046
0.372 0.313 0.231 0.030 0.256 0.214 0.154 0.037 - - - - 0.165 0.151 0.133 0.099

gravel 0.060 0.056 0.055 0.041 0.045 0.044 0.046 0.035 0.064 0.060 0.057 0.039 - - - -
0.191 0.166 0.134 0.030 0.090 0.079 0.066 0.037 0.136 0.119 0.098 0.067 - - - -
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Fig. 5. Result of a simulation: The position (left) and orientation (right)
error distribution of a Teodor robot changing from cinder to grassland
without and with collective scaling.

the deviation of the simple method.

VI. SUMMARY AND CONCLUSION

In this paper we presented an adaptive navigation system
based on predefined motion templates called Motion Patterns.
The system has the ability to incorporate the actual robot
movement into the Motion Patterns. The updating process
is not limited to the actually driven Motion Pattern. In
most cases the system is also able to derive adjustment
information for all other patterns as well. The soundness
of our approach has been shown in a simulation study
using real-word data. The system proved it can efficiently
learn the robot’s behavior after transitions between different
surface types while outperforming the previous approach
without collective scaling. Future work will focus on further
improving the performance of the motion learning and adapt-
ing mechanisms. Decomposing a Motion Pattern’s recorded
trajectory in a series of straight lines and connection angles
could lead to an improved geometrical understanding.

Acknowledgements: The presented system is part of the
project RoboGasInspector, funded by the German Federal
Ministry of Economics and Technology based on a resolution
of the German Bundestag.
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Towards the implementation of a MPC-based planner on an

autonomous All-Terrain Vehicle

Luca Bascetta, Davide Cucci, Gianantonio Magnani, Matteo Matteucci,

Dinko Osmanković, Adnan Tahirović

Abstract— Planning and control for a wheeled mobile robot
are challenging problems when poorly traversable terrains,
including dynamic obstacles, are considered. To accomplish a
mission, the control system should firstly guarantee the vehicle
integrity, for example with respect to possible roll-over/tip-over
phenomena. A fundamental contribution to achieve this goal,
however, comes from the planner as well. In fact, computing
a path that takes into account the terrain traversability, the
kinematic and dynamic vehicle constraints, and the presence of
dynamic obstacles, is a first and crucial step towards ensuring
the vehicle integrity.
The present paper addresses some of the aforementioned issues,
describing the hardware/software architecture of the planning
and control system of an autonomous All-Terrain Mobile Robot
and the implementation of a real-time path planner.

I. INTRODUCTION

The popularity of the research on wheeled mobile robots

has been recently increasing, due to their possible use in dif-

ferent outdoor environments. Planetary explorations, search

and rescue missions in hazardous areas [1], surveillance,

humanitarian de-mining [2], as well as agriculture works

such as pruning vine and fruit trees, represent possible ap-

plications for autonomous vehicles in natural environments.

Differently from the case of indoor mobile robotics, where

only flat terrains are considered, outdoor robotics deals with

all possible natural terrains. The unstructured environment

and the terrain roughness, including dynamic obstacles [3],

and poorly traversable terrains, make the development of an

autonomous vehicle a challenging problem.

The aim of our research is to develop an All-Terrain

Mobile Robot (ATMR), based on a commercial All-Terrain

Vehicle (ATV), that is suitable for a wide range of different

outdoor operations. The ATMR should be able to operate

in any natural environment with a high level of autonomy.

The advantage of using ATVs is represented by their good

traversability potential for poorly traversable terrains and by

the short time spent for reaching the goal, as well as by the

possibility to operate in unsafe environments. On the other

hand, the main disadvantage of ATVs is their low stability
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Regional Development Agency of the Lazio Region in Italy, under grant
agreement No. FILAS-RS-2009-1290 - Project QUADRIVIO.
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margin due to dynamic constraints, roll-over and excessive

side slip [4].

ATVs are highly unstable, especially during fast turns and

uphill/downhill riding, and a roll/tip-over can often occur. To

overcome those problems the development of some active

control systems [5], and in particular an Anti-Roll-over Sys-

tem [6], would certainly enhance their drivability. Moreover,

it becomes necessary once the vehicle is teleoperated or

autonomous. The design and development of an All-Terrain

Mobile Robot is thus a challenging task, especially when a

high level of autonomy is required. Indeed, due to the com-

plex tasks the robot is supposed to perform, the design of the

entire control architecture is anything but trivial [7]: different

kind of requirements come from software engineering (e.g.

modularity or maintainability), control theory (e.g. stability,

robustness, hard real-time-ness) and mobile robotics (e.g.

path planning, obstacle avoidance). The hardware/software

architecture should fulfil them all in the simplest way.

A natural way to achieve those requirements is to design a

multi-layered software architecture, in order to map higher

levels of algorithmic abstraction to the top layers of the ar-

chitecture. The control level that will act as an interface from

these high level tasks (action planning, goal prioritisations,

etc.) and the vehicle itself will be called “virtual rider”. The

aim of the virtual rider is to interpret commands from planner

and execute them avoiding dangerous manoeuvres that could

result in instability. Together with the virtual rider algorithm,

a low level control software will be necessary in order to

execute simple commands such as steering or braking.

All the aforementioned issues, crucial to ensure the vehicle

integrity, can be addressed at two different levels. On one

side, the virtual raider should operate in real-time to keep,

as much as possible, the vehicle in a safe condition, or

to recover it from dangerous situations. On the other, the

planner plays a crucial role in computing a safe path, that a

priori avoids dangerous manoeuvres.

The present paper describes the implementation and pre-

liminary validation of a MPC-based planner that allows

to compute in real-time a path from a starting to a goal

position, taking into account obstacles, terrain characteristics

and vehicle dynamic and kinematic constraints. The planner

is implemented using an optimal control software (ACADO)

to solve an initial value optimal control problem in receding

horizon manner. Performance function and cost-to-go term

are based on the terrain roughness. We locally interpolate

roughness data at each time horizon with differentiable func-

tions making it possible to use optimal control techniques
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provided by ACADO.

II. THE ATMR

The vehicle considered in this research (see Figs. 1 and 2)

is a YAMAHA GRIZZLY 700, a commercial fuel powered

All-Terrain Vehicle (ATV) equipped with an electric power

steering (EPS).

The GRIZZLY 700 is a utility ATV and is thus specifically

designed for agriculture work. As a result it has a total load

capacity of 130 Kg, and it is equipped with a rear tow hook.

The main characteristics of the vehicle are listed in Table I.

Fig. 1. The Yamaha Grizzly 700 ATV

Fig. 2. The vehicle with the new cover

For the purposes of the project, the original vehicle cover

has been removed and substituted with an aluminium cover,

that allows to easily accommodate for the control hardware

and the sensors (Fig. 2).

III. CONTROL SYSTEM ARCHITECTURE

In order to make the vehicle teleoperated, or even au-

tonomous, an on-board hardware/software control platform

Main characteristics of the vehicle

Engine type 686cc, 4-stroke, liquid-cooled, 4 valves
Drive train 2WD, 4WD, locked 4WD
Transmission V-belt with all-wheel engine braking
Brakes dual hydraulic disc (both f/r)
Suspensions independent double wishbone (both f/r)
Steering System Ackermann
Dimensions (LxWxH) 2.065 x 1.180 x 1.240 m
Weight 296 Kg (empty tank)

TABLE I

VEHICLE CHARACTERISTICS

has to be added. While the implementation of the whole

architecture is still under development, a functional diagram

that shows the main components of the control system and

their relationships is shown in Fig. 3.

The architecture can be divided into three different layers.

The top level is a high level planner responsible for the task

acquisition and for the medium-long range navigation and

planning functionalities. The virtual rider is an intermediate

level and is responsible for short range navigation, planning

and vehicle stabilisation. It has to ensure vehicle integrity

with respect to roll-over/tip-over instabilities, obstacles and

terrain traps, etc., replacing the typical low-level riding

skills of a human. The lower level represents an interface

between the vehicle commands and the virtual rider. Such

level interacts with the vehicle measuring the steering angle,

throttle ratio, vehicle speed, etc., and acting on the steering

column, the throttle leverage and/or the brake pedal through

suitable sensors and actuation systems (see [8] for further

details).

To implement such a complex architecture that includes

high level and low level tasks, the former characterised by an

heavy computational load but slower sampling frequencies,

the latter being simpler but needing a faster time response,

a multi-layered and multiprocessor hardware/software archi-

tecture is required. In this way, one can separate complex

(localisation and navigation on rough terrains, obstacle avoid-

ance, sensor fusion, etc.) from simple tasks (motion control

and servo actuation) and faster from slower ones.

The hardware/software architecture should be as modular

as possible, in order to be simply reconfigurable and up-

gradeable. Indeed, the different computational complexity

of the tasks calls for different layers of the control system,

thus a multiprocessor architecture is an obvious choice. On

the other hand, the navigation control system requires the

complete knowledge of the state of the vehicle (in terms of

what the sensors are perceiving) to take the best decision

autonomously. Thus a very large amount of data must be

shared between the system’s layers.

The selected hardware architecture (Fig. 4) consists of:

• a low level CPU (PLC) with several I/O modules to

perform the control of the steering angle, the throttle

position, the pressure of the hydraulic braking circuit,

etc. An industrial PLC provided by B&R AUTOMATION

(X20 CPU: Celeron 650, 64 MB DRAM, 1 MB SRAM,

maximum bus frequency 2 kHz) was selected for its
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Fig. 3. Functional diagram of the controller architecture

dependability and robustness. Indeed, the choice of a

PLC is a good compromise between the hard real-time

requirement and the possibility of high level program-

ming.

• a high level PC to implement the high level algo-

rithms: the so called “virtual rider” (vision, terrain

perception, localisation and mapping, obstacle and roll-

over avoidance, etc.), the medium-long range navigation

an planning, etc. For this purpose, an Industrial PC

(2.16 GHz Intel Core Duo T7400, 2 MB L2 cache,

1024 MB DDR2 RAM, 5 PCI slots) provided by B&R

AUTOMATION was selected.

A standard Ethernet communication link was selected to

connect the two CPUs.

IV. SOFTWARE ARCHITECTURE

Fig. 5 shows the main modules of the software architecture

implemented on the ATMR (as previously introduced, the

functional architecture presented in Section III has been only

partially implemented).

In the upper part there are the modules running on the

PC, while in the lower part the tasks running on the PLC.

On the PC two different middle-wares have been used to

implement the overall system: ROS [9] and OROCOS [10].

While the former provides useful functionalities out of the

box (e.g., laser sensor acquisition, mapping and planning)

and thus it helps in speeding up the development, the latter

has been used for critical control tasks having hard real-time

requirements.

As already stated, the PLC runs the low-level actuator

control loops and the sensor acquisition functionalities (e.g.,

speed, steering angle, stability indexes, etc.). The set points

are sent to the low-level control loops (i.e., speed, steer,

and brake) by the OROCOS task named MULTIPLEXER,

which has the role of deciding whether the ATMR should

be teleoperated, i.e. guided by a wireless JOYPAD, or a

REMOTE CONTROL STATION (RCS), or autonomous, i.e.

the CONTROLLER is in charge of trajectory following.

A simple trajectory follower has been implemented, decou-

pling the geometrical path following, that is accomplished

acting on the steering angle, from the speed control. Follow-

ing this idea, two independent PID control loops have been

realised: one controlling the steering angle on the basis of

the vehicle alignment and distance error [11], computed by

the SEQUENCER module, the other one regulating the vehicle

speed.

The ATMR position is estimated by an EXTENDED

KALMAN FILTER (EKF) that uses the Ackerman kinematic

model and integrates speed and steer measurements from the

ATV sensors together with the position provided by a RTK-

GPS with external correction (up to few centimetres accu-

racy). At the present stage, the magnetometer measurements

of an inertial measurement unit are used to initialise the EKF

heading estimate, but we plan to integrate them in the EKF

once a proper dynamic model of the vehicle is developed.

The pose computed by the EKF module is also provided

to the modules implemented under ROS, and it is used to

align the point clouds acquired by a Sick LD-MRS laser

range finder with the map of the environment.

This map in turn is used by a Model Predictive Control

(MPC) based planner to generate the desired trajectory for

the ATMR. This task is performed by a set of ROS nodes

since most of the routines where already available under

that middle-ware and the loose real-time requirements of

planning were satisfied by ROS scheduling. It should be

noticed that planning is a critical aspect when moving in

rough terrains since, by carefully taking into account the

constraints of the vehicle, safe trajectory can be planned. The

result of this planning activity is then fed to the SEQUENCER

module to be executed under real-time conditions.

When navigating an unknown environment unexpected, or

unmapped, obstacles might appear; in this case the map need

to be updated and the planning activity re-executed to take

into account the new information. In our case the MPC based

planner is re-executed continuously so this map update is

managed in a natural way. However, MPC planning might
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Fig. 4. Hardware architecture

Fig. 5. Software architecture

take some time to compute a new plan or the computation

can even fail. To cope with this possibility, a SAFETY

module that, observing the point cloud generated by the

sensor, overrides the maximum speed allowed for trajectory

following has been introduced.

V. A MPC-BASED PLANNER

Including the vehicle model into the motion planning stage

provides a planner which generates trajectories that can be

easily followed by a mobile robot. This especially comes to

the fore when a vehicle moves with high speed and operates

on rough terrains. Using a simpler planner that does not

take into account the mobile vehicle model might cause a

fatal error due to the difference between the planned and

executed trajectories. For this reason, the gradient based

algorithms such as the navigation function or a variant of

the D∗ [12], [13], [14], in our case are not considered an

acceptable solution.

Finding an optimal path on rough terrains, given a vehicle

model and all information about the terrain, can be expressed

as a two point boundary value optimal control problem

(OCP). Including the terrain shape into an objective function

for the OCP might result into a problem difficult to solve.

Namely, the OCP softwares, including ACADO [15], the

software used in this work, require a differentiable objective

function. To overcome this problem, a kind of interpolation

of the terrain shape must be applied. However, such an

interpolation might be computationally intensive even for

medium size terrains, and finding the best path solving an

OCP might be impractical for real-time implementation.

The approaches [16], [17], [18], [19], [20], all consider

the vehicle model to find the final path from an initial to

the goal position. They use an appropriately selected state-

space sampling technique, in which a planner propagates the
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vehicle model over these states toward the goal position.

However, these approaches might easily miss some key state

spaces yielding a solution being far from optimal. If the

vehicle discovers different information during the execution,

these approaches re-plan from scratch finding a new path to

the goal position. In case of uncertain terrains, a frequent

complete replanning makes it difficult to use the approach

for real-time implementation.

In this work, we use an adapted real-time Model Predictive

Control (MPC) based motion planner, introduced in [21]

and [22]. At each time sample, the planner finds the best

local trajectory (within the sensor range) given the current

vehicle state and terrain information. Such an “on-line”

optimisation during the task execution is in accordance with

the MPC approach, hence the name. The MPC based motion

planner easily accommodates for a vehicle model and any

form of constraints into the optimisation set-up. In [21], the

optimization has been performed using genetic algorithms

in order to cover the control space of the vehicle model and

to find the best solution at each time sample. In this paper,

the objective function and the cost-to-go term are based on

the terrain roughness. We locally interpolate roughness data

(within the vehicle sensor range) at each time horizon into

differentiable functions making it possible to use optimal

control techniques provided by ACADO.

The MPC optimization problem can be expressed as an

initial value OCP problem with an end-free position (eqs. 1-

5). The task of this optimization is to find the input u of the

vehicle (velocity and steering angle momentum for kinematic

model) along the optimization horizon t ∈ (t0, t0+T ), that is

over all potential candidate paths, by minimizing the cost

function J(u) given in (1). The integrand γ(x,u) represents

the local roughness estimated by the vehicle within the

sensor range. We use the roughness-based navigation RbNF,

which represents a cost-to-go map, to extract a cost-to-

go term Γ required by the MPC optimization. The RbNF

might be computed as an optimal or approximated cost-

to-go map [23]. The former gives better results, but is

computationally expensive for large scale terrains. Since in

our work we experiment with a small-scale terrain, the com-

putational issue is not addressed. When the vehicle senses

new information during the task execution, the RbNF can be

updated similarly to [13]. Eqs. (2-5) represent optimization

constraints including the differential constraint related to the

vehicle model (2), control constraints (3), the safe stopping

constraint (4) and the constraint which ensures the decrease

of the Γ in order to guarantee that the plan reaches the goal

position (5).

J(u) =
∫ t0+T

t0

γ(x, u)dt +Γ(t0 +T ) (1)

d

dt
x = f (x)+g(x)u (2)

u(t)≤ umax (3)

v(t0 +T ) = 0 (4)

Γ(r(t0 +T ))< Γ(r(t0 +T1))< Γ(r(t0)) (5)

In some rare cases when ACADO fails, bringing back an

infeasible solution or no solution, we use a backup strategy

to guide the vehicle forward. In those cases, a planner selects

a close way-point which is located along the steepest descent

of the RbNF and solves for a two point boundary value OCP

problem.

In the sequel, the aforementioned advantages of an MPC

motion planner are summarised. An MPC based motion

planner can easily accommodate for a vehicle model with all

the required constraints. The planner might be near optimal

(giving the current state information) due to “the optimality

principle” since the RbNF is a near optimal estimator of the

cost-to-go optimisation term. Since the MPC horizon can be

arbitrarily chosen, a terrain shape interpolation required to

get a differentiable objective function can be locally applied

as in [24]. Having a differentiable objective function allows

for using an OCP software. Using a software to solve a local

OCP problem, like ACADO, covers much of the control and

state space comparing to [16], [17], [18], [19], [20]. Finally,

instead of repeating the complete path planning procedure

from scratch when the vehicle senses new information, the

RbNF can be easily updated similarly to [13].

VI. SIMULATION RESULTS

Fig. 6 illustrates a path generated by an MPC based

planner. The path is drawn over a contour plot of the terrain

roughness map. The terrain roughness map is computed by

using terrain heights as in [25] and [22].

The example shows that the generated path avoids obstacles,

follows less roughness regions (blue regions in Fig. 6) and

reaches the goal position (start and goal positions are marked

with a red and a pink disk, respectively).

Fig. 6. An example of an MPC based solution

Finding a trajectory from an initial to the goal position

using an OCP software is hardly feasible in real-time,

especially for a large-scale terrain. The OCP solution finds

the control inputs (velocity and steering angle for a kinematic

model which is used in the simulations) that minimise
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traversed roughness, taking into account the required con-

straints. Some of the possible constraints might include:

avoiding obstacles, velocity and steering limitations, vehicle

stability and the RbNF decreasing to guarantee reaching the

goal (see, e.g. [22]).

In some cases where the terrain is small-scale, it is possible

to compute a solution in a reasonable time by an OCP

software such as ACADO. For this reason, we have used a

small terrain 50m x 50m to compare an optimal and a MPC

based solutions exploring the MPC sub-optimality. Fig. 7

depicts 10 simulations in which the same rough terrain and

different vehicle initial positions are used. The average sub-

optimality of the MPC based path planner can be computed

as

α =
1

N
∑

roughnessOCP

roughnessMPC
= 0.43

where N is the number of simulations. One might see that in

the 9th and 10th simulations, ACADO did not find a feasible

solution for the OCP problem (depicted by 0 in the picture).

Fig. 7. I: Small-scale terrain. MPC and OCP solutions.

Fig. 8 depicts another example with 10 simulations on

the same terrain with the same vehicle initial position and

roughness shape, but with different obstacles. There are some

examples where a MPC based solution has given a better

result. This can be explained by the fact that an OCP software

parametrises the control space in order to find the best

solution. This might produce a solution that is not necessary

the optimal one. In this example, the sub-optimality of the

MPC path planner is much higher (α = 0.93).

A two boundary value problem is difficult to solve in a

feasible time on a large-scale terrain. For this reason, we

use three different planners for a 500m x 500m terrain,

a MPC based planner, a gradient based planner and a

smooth gradient based planner. The gradient based planner

is generated by the steepest descent of the RbNF. As already

discussed, the gradient based planner is not considered as

an acceptable solution in our work, since it does not take

the vehicle model into account, and it is hard to predict how

Fig. 8. II: Small-scale terrain. MPC and OCP solutions.

well the vehicle will follow such path. However, in order to

validate the MPC based path planner, we introduce a smooth

gradient based path planner which picks a point on the path

obtained by the gradient based path planner and solves for a

two boundary problem. Then, it repeats the procedure going

towards the goal position. Fig. 9 compares the two planners

on 10 different rough terrains. The sub-optimality of the

MPC based path planner is α = 1.8, which means that the

MPC based planner performs better than the smooth gradient

path planner. Again, this can be explained by the fact that

the smooth gradient based path planner does take the vehicle

model into account but only to follow the gradient based path

planner.

Fig. 9. Large-scale terrain. MPC and smooth gradient based solutions.

VII. CONCLUSIONS

This paper describes part of the work devoted to the

development of an All-Terrain Mobile Robot, based on a

commercial All-Terrain Vehicle, for high speed riding on

difficult terrains.

Among the huge number of functionalities required to au-

tonomously take the vehicle from a start to a goal position
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through a safe path, accounting for terrain traversability,

obstacles and vehicle constraints, the paper is focused on the

hardware/software architecture and, above all, on the real-

time implementation of a MPC-based planner. The issues

involved in the implementation of the planner, using the

open-source solver ACADO, are thoroughly discussed.

The simulation results show the effectiveness of the planner,

and compare the paths computed by the MPC planner with

those computed using a different approach.

An experimental validation of the MPC planning software,

using the vehicle described in Section II, is ongoing. The

results will be published soon.

REFERENCES

[1] A. Garcia Cerezo, A. Mandow, J. Martinez, J. Gomez de Gabriel,
J. Morales, A. Cruz, A. Reina, and J. Seron, “Development of
ALACRANE: a mobile robotic assistance for exploration and rescue
missions,” in IEEE International Workshop on Safety, Security and

Rescue Robotics, 2007.
[2] P. Debenest, E. Fukushima, and S. Hirose, “Proposal for automation of

humanitarian demining with buggy robots,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, vol. 1, 2003, pp. 329–
334.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE International Conference on Robotics and Automa-

tion, vol. 2, 1985, pp. 500–505.
[4] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “Backstepping

observer dedicated to tire cornering stiffness estimation: application to
an All Terrain Vehicle and a farm tractor,” in IEEE/RSJ International

Conference on Intelligent Robotics Systems, 2007, pp. 1763–1768.
[5] J. van der Burg and P. Blazevic, “Anti-lock braking and traction

control concept for all-terrain robotic vehicles,” in IEEE International

Conference on Robotics and Automation, vol. 2, 1997, pp. 1400–1405.
[6] N. Bouton, R. Lenain, B. Thuilot, and J. Fauroux, “A rollover

indicator based on the prediction of the load transfer in presence of
sliding: application to an All Terrain Vehicle,” in IEEE International

Conference on Robotics and Automation, 2007, pp. 1158–1163.
[7] H. Utz, S. Sablatnög, S. Enderle, and G. Kraetzschmar, “Miro-

middleware for mobile robot applications,” IEEE Transaction on

Robotics and Automation, vol. 18, no. 4, pp. 493–497, 2002.
[8] L. Bascetta, G. Magnani, P. Rocco, and A. Zanchettin, “Design and

implementation of the low-level control system of an All-Terrain
Mobile Robot,” in International Conference on Advanced Robotics,
2009.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating Sys-
tem,” in IEEE International Conference on Robotics and Automation

- Workshop on Open Source Software, 2009.
[10] H. Bruyninckx, “Open robot control software: the OROCOS project,”

in IEEE International Conference on Robotics and Automation, 2001,
pp. 2523–2528.

[11] M. Linderoth, K. Soltesz, and R. Murray, “Nonlinear lateral control
strategy for nonholonomic vehicles,” in American Control Conference,
2008, pp. 3219–3224.

[12] A. Stenz, “Optimal and efficient path planning for partially-known
environments,” in Proc. of the IEEE International Conference on

Robotics and Automation, 1994, pp. 3310 – 3317.
[13] A. Stentz, “The focussed D* algorithm for real-time replanning,” in

Proc. of the International Joint Conference on Artificial Intelligence,
1995, pp. 1652–1659.

[14] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.
354 – 363, 2005.

[15] B. Houska and H. Ferreau, “ACADO toolkit - Automatic Control and
Dynamic Optimization,” http://acadotoolkit.org.

[16] C. J. Green and A. Kelly, “Toward optimal sampling in the space of
paths,” in Proc. of the International Symposium of Robotics Research,
2007, pp. 171 – 180.

[17] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” J. Field Robot., vol. 26,
no. 3, pp. 308–333, 2009.

[18] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory gener-
ation for wheeled mobile robots,” Int. J. Rob. Res., vol. 26, no. 2, pp.
141–166, 2007.

[19] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in Proc. The 8th International Symposium on

Artificial Intelligence, Robotics and Automation in Space, September
2005.

[20] T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, “State
space sampling of feasible motions for high-performance mobile
robot navigation in complex environments,” Journal of Field Robotics,
vol. 25, no. 10, pp. 325–345, 2008.

[21] A. Tahirovic and G. Magnani, “General framework for mobile robot
navigation using passivity-based MPC,” IEEE Transactions on Auto-

matic Control, vol. 56, no. 1, 2011.
[22] ——, “Passivity-based model predictive control for mobile robot

navigation planning in rough terrains,” in Proc. The 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, October
2010.

[23] ——, “A roughness-based rrt for mobile robot navigation planning,”
in Proc. the 18th IFAC World Congress, September 2011.

[24] F. J. Aguilar, F. Agüera, M. A. Aguilar, and F. Carvajal, “Effects of
terrain morphology, sampling density, and interpolation methods on
grid dem accuracy,” Photogrammetric Engineering & Remote Sensing,
vol. 71, no. 7, 2005.

[25] K. Iagnemma and S. Dubowsky, Mobile Robots in Rough Terrain: Es-

timation, Motion Planning and Control with Application to Planetary

Rovers. New York: Springer Berlin / Heidelberg, 2004.

61



Sensor-based trajectory generation for safe human-robot cooperation

Andrea Maria Zanchettin and Bakir Lacevic

Abstract— This paper presents a strategy for sensor-based
trajectory generation in unstructured environments which guar-
antees the achievement of the goal position without incurring in
local minima. The passivity of the closed-loop system renders
this control scheme well-suited for human-robot cooperation,
especially when the robot is supposed physically interact with
humans. The given control law has been implemented and
experimentally tested in a realistic scenario, demonstrating the
effectiveness in driving the robot to a given configuration in a
cluttered environment without any offline planning phase.

I. INTRODUCTION AND MOTIVATIONS

Future paradigms in industrial robotics no longer re-

quire a physical separation between robotic manipulators

and humans. Moreover, to optimize production, humans

and robots will be expected to cooperate to some extent.

In this scenario, involving a shared environment between

humans and robots, common industrial robot controller might

turn to be inadequate for this purpose. In order to obtain

a natural and safe collaboration, robots will be equipped

with sophisticated sensing devices and with human-aware

control/planning capabilities.

In the literature many attempts in developing suitable robot

reactions to unforeseen events have been presented by means

of trajectory adaptation [4], [7] or modifications based on

sensor readings, [2], [5]. However, in case of very unstruc-

tured environments, a better solution might be achieved with

an advanced sensor-based motion and trajectory generation,

rather than an online modification of an offline planned path.

The aim of this research is to provide tools to overcome the

current limitations in off-the-shelf robot controller and pro-

pose an online trajectory generator capable of understanding

the environment and of computing a sensor-based trajectory

to let the robot perform a prescribed task with a suitable

level of safety.

A preliminary version of this work is discussed in [8], while

paper complements the previous one by adding more details

on the actual implementation of the sensor-based trajectory

generation and discussing the outcome of more realistic

experiments.
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II. BACKGROUND MATERIAL

In this Section, the concept of danger field [6] is briefly

outlined. Basically, the danger field is a scalar quantity that

captures how much is a specific state of the robot (position

and velocity) dangerous with respect to a generic point

in the workspace. The intuition behind is that the danger

field decreases with the distance from the robot whereas it

increases with the robot’s velocity, particularly if the robot

moves towards the location where the field is computed at.

For a simple case of a point robot located at rs ∈ R
3,

moving with the velocity vs ∈ R
3, the elementary danger

field at the position rj ∈ R
3 could be defined as DFe =

SDFe +DDFe, where

SDFe =
k1

‖rj − rs‖
λ1

, (1)

DDFe =
k2 ‖vs‖

λ2 (1 + cos∠ (rj − rs,vs))

‖rj − rs‖
λ3

, (2)

and SDFe and DDFe are the elementary static and kinetic

danger fields respectively, k1, k2, λ1, λ2, λ3 being positive

parameters1. The elementary danger field can be generalized

to its cumulative version that captures the position and veloc-

ity of the robot’s i-th link by performing a path integration

along the straight line that represents the wire model of the

link:

DF =

∫ 1

0

SDFe(s)ds+

∫ 1

0

DDFe(s)ds. (3)

For a robot with n links, the cumulative danger field induced

at the locations of interest rj , j = 1, . . . , nobst (e.g., the

relevant positions of obstacles) can be expressed as:

DF = SDF +DDF =

nobst
∑

j=1

n
∑

i=1

∫ 1

0

k1ds

‖rj − ri,s‖
λ1

+

+

nobst
∑

j=1

n
∑

i=1

∫ 1

0

k2 ‖vi,s‖
λ2 ρi,j,s

‖rj − ri,s‖
λ3

ds,

(4)

where ρi,j,s = 1 + cos∠ (rj − ri,s,vi,s). Knowing ri,s
from the forward kinematics and letting vi,s = Ji,sq̇,

where Ji,s represents the Jacobian at point ri,s on the

manipulator, the cumulative danger field becomes a function

of the configuration q and its time derivative q̇. Figure 1

shows volumetric representation of the danger field induced

by a 6 DOF robotic manipulator. Notice the typical onion-

like charecteristic of the danger-field very similar to the

1Note that this is a slight generalization of the danger field with respect
to [6].
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Fig. 1. Danger field around a 6 DOF manipulator: three different perspectives of the same robot state. The velocities of the link endpoints are indicated.

concept of minimum separation distance, developed in [1].

For the computational aspects of the danger field, the reader

is referred to [6].

III. IMPLEMENTATION

The sensor-based module for online trajectory generation

described in this paper works within a real-time loop of 4
ms, the same as the low-level axis control and consists of

three blocks:

• a module for trajectory generation, communicating with

the robot controller via a real-time Ethernet connection,

see [3], and providing it joint references;

• a module for task description, implementing a state-

machine and also responsible of temporary task sus-

pension in case of physical cooperation initiated by the

human operator;

• an interface to the workspace surveillance sensor, mon-

itoring and tracking the human or any obstacle and

providing a synthetic representation of them to the

trajectory generation module.

The three-blocks architecture and their connections are de-

picted in Fig. 2. In the following, each of the three modules

Fig. 2. Components of the trajectory generation algorithm

is detailed.

A. Sensor-based trajectory generation

For a given desired Cartesian position/orientation xd com-

puted by the state-machine, a trajectory in the configuration,

i.e. q (t) , q̇ (t) space is generated in real-time depending on

sensor (proximity and force/torque) readings. In particular,

the trajectory is computed by integrating the following dy-

namic system:

q̈ =JT (γKP (q) e+ hext)−KDq̇

+α (q)F (µ, q̇)µ− β (q, q̇)

(

∂DF

∂q̇

)T
(5)

where

µ = −

1

2

[

‖∇U‖ ‖∇SDF‖+∇U (∇SDF )
T
]

(∇SDF )
T

(6)

is an evasive action preventing the robot hitting obstacles (or

humans) in its working space,

F (µ, q̇) =

{

In, if µT q̇ ≤ 0

P⊥ (q̇) , otherwise

P⊥ (q̇) = In −

q̇q̇T

‖q̇‖
2

(7)

is a weighting matrix, while α (q) , β (q, q̇) , γ are positive

weighting parameters and KP ,KD are definite positive ma-

trices. The overall system is depicted in Fig. 3. The dynamic

system (5) has different properties such as guaranteed goal

achievement with proved absence of local minima, enforced

passivity mapping between external wrenches hext and joint

velocities q̇ and others. The reader is referred to [8] for a

more rigorous explanation of these concepts.

B. Workspace surveillance and geometric representation of

obstacles

For workspace surveillance a range camera (MICROSOFT

KINECT) with the OPENNI drivers have been selected. The

output of the sensor consists of a segment representation
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Fig. 3. Block diagram of the sensor-based trajectory generation

of the human silhouette capturing the position of anatomical

points along the body (head, shoulder, elbow, wrist, hip, etc.),

see Fig. 4.

ROBOT

FORCE SENSOR

HUMAN OPERATOR

Fig. 4. Robot’s workspace as seen from the surveillance range camera

A set of interesting points where to compute the dan-

ger field should be selected. Therefore, a simple and fast

algorithm compatible with the representation of obstacles

provided by the KINECT is described in the following.

While the robot is described as a chain of segments, a

generic obstacle (the human operator in this work) can be

decomposed in a set of segments, spheres or represented by

a more generic triangular meshed surface. Algorithmic prim-

itives based on quadratic optimization have been developed

to estimate the closest points of each obstacles to the robot.

For example, a segment S can be parameterized by means of

a vertex P and a vector d such that all the points belonging

to the segment can be written as follows:

S (t) = P + td, 0 ≤ t ≤ 1 (8)

The minimum distance between two segments, hence the

closest point to each link of the robot, can be obtained by

solving the following constrained optimization problem

min
t1,t2

‖S1 (t1)− S2 (t2)‖
2

subject to 0 ≤ t1, t2 ≤ 1
(9)

On the other hand, a triangle T is parameterized by means

of a vertex V and two vectors e0, e1. This way all the points

belonging to the triangle can be written as follows:

T (u, v) = V + ue0 + ve1 (10)

subject to the following constraints

0 ≤ u ≤ 1,

0 ≤ v ≤ 1,

u+ v ≤ 1

(11)

Therefore the closest point on the robot link can be computed

by simply solving the following optimization problem:

min
t,u,v

‖S (t)− T (u, v)‖
2

subject to 0 ≤ u, v, t ≤ 1, u+ v ≤ 1
(12)

In this case study, where only the human operator represents

an obstacle, its body is decomposed into four segments (right

and left arm and forearm), one triangle (torso) and one sphere

(head). The algorithm described so far to compute the closest

point to the robot is then applied providing a set of points

where the trajectory generation algorithm will compute the

danger field. The depicted scenario is sketched in Fig. 5.

C. State-machine and safety supervisor

A state-machine has been implemented to both monitor the

execution and eventually suspend the task when the user gets

too close to the robot. During the normal execution, the state-

machine communicates with the trajectory generation mod-

ule sending the sequence of Cartesian position/orientation

references. When the value of the danger field exceeds a

prescribed threshold DF sup

thr , the task is suspended by setting

γ = 0. In this situation the trajectory generation is still
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Fig. 5. Points on the human body where danger field will be computed

active but without any reference position/orientation. This

is meant to allow the user to manually guide the robot

motion, e.g. to teach the robot new positions. When the

Fig. 6. State-machine governing task execution and suspension

danger field assumes values lower than another threshold

DF inf

thr < DF sup

thr , the main task is resumed from the point

where it was suspended by setting γ = 1. Figure 6 sketches

the task suspension/resumption mechanism.

IV. EXPERIMENTS

As a validation of the proposed control strategy, some

experimental tests have been carried out on an industrial

manipulator. The 6 axes ABB IRB-140 robot with 6 kg
payload was used for this purpose. The manipulator is

equipped with an ATI force/torque sensor mounted on the

robot end-effector and interfaced with the controller. All the

sensors are acquired and processed within an external real-

time LINUX PC interfaced with the ABB IRC5 industrial

robot controller using a communication link developed, see

[3].

A realistic industrial scenario has been arranged in order to

resemble a typical machine tending task: the robot handles

a workpiece from a storage station and transports it to a

position located on the other side of its workspace.

The operator, regarded as a moving obstacle, is able at any

time to enter the working area of the robot for inspection and

for this reason a proper safety action should be guaranteed,

possibly without interrupting the production. During the

Fig. 7. Human-robot coexistence (γ = 1)

Fig. 8. Human-robot physical cooperation (γ = 0)

experiment, the same production cycle has been repeated 3

times. During the last two repetitions the human operator

enters the scene and walks towards the pick-up station

approximately at time instants t = 25s and t = 70s. This

is confirmed by the profile of the danger field, see Fig. 9,

which captures a more dangerous situation due to the vicinity

of the human. Correspondingly the robot first tries to reduce

the speed and then, since the danger field exceeds the desired

threshold, suspends the task to allow the physical cooperation

with the operator (this situation is highlighted with gray

bands in the Figures). The accompanying video shows the

execution of the experiment.

V. CONCLUSIONS

This paper complements [8] detailing the implementation

of a newly conceived passivity-based control scheme for

robotic manipulators in cluttered environments. The control
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Fig. 9. Profile of the danger field and safety thresholds

law has been experimentally verified in a scenario involving

an industrial manipulator physically cooperating with a hu-

man operator, demonstrating the possibility to safely move

the robot in given configurations without any offline planning

phase.
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Online Kinodynamic Trajectory Generation using Nonlinear Filters: a
Multi-Dimensional Space Approach

Marcello Bonfè, Cristian Secchi and Enea Scioni

Abstract— The paper describes trajectory generation algo-
rithms based on nonlinear smoothing filters, which can be
applied to kinodynamic motion planning for mobile robots in
a two-dimensional or three-dimensional space. The trajectory
generators operate fully online to reach a given target point
according to a pursuit-based logic. The logic sets reference
inputs and dynamic constraints for a set of nonlinear filters,
whose output signals are finally used to compute the trajectory
compatibly with the kinematic model and the dynamic features
of the robot tracking such a trajectory. Since the target
point of the trajectory generator can be changed at any time
during motion, the algorithm can execute online smoothing
of straight-line reference paths, for example composed of via-
points assigned by a global planner on the basis of obstacle
avoidance rules.

I. INTRODUCTION

Generation of smooth motion trajectories, subject to kine-
matic and dynamic constraints, is a fundamental issues
in robotics. Motion planning is usually separated into the
geometric problem (path planning), whose solution is a
parametric path depending on an unspecified timing law to
become executable, and the actual trajectory planning, in
which the timing law for a given path is designed. Path
planning for mobile robots and autonomous vehicles must
take into account nonholonomic constraints and/or obstacles,
while constraints involved by dynamics laws and actuator
bounds must be addressed during the design of either timing
plans or tracking control algorithms, see [1] (Ch. 4,7,8).

The literature on path planning describes many solutions
to avoid collision with static or moving obstacles, see [2]. If
static obstacles are considered, robot motion can be planned
in advance and efficient, but computationally demanding,
interpolation methods can be applied. However, when the
tasks of the robot or the positions of obstacles are not fully
known a priori, paths must be adapted or re-planned online,
within hard real-time constraints. Moreover, any path must be
associated with a feasable timing law to become a trajectory
compatible with the dynamic features of the robot.

The trajectory generation solution first introduced by [3]
is specifically designed for online execution, thanks to its
limited computational demand and to its discrete-time behav-
ior. The output of the proposed trajectory generator is fully
specified (in cartesian coordinates) with respect to time and
has continuous curvature, so that it is compatible with with
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kinodynamic constraints (i.e. bounded linear/angular velocity
and acceleration) of unicycle-like robots. Finally, the input of
the trajectory generator can be either a sequence of fixed via-
points, along a straight-line path, or a time-varying reference
point, which may be provided by global planning algorithms
implementing obstacle avoidance, but not necessarily precise
geometric path design, since the smoothing action of the
trajectory generator compensates path discontinuities.

In this paper, we extend the contribution of [3] by
analysing the geometric features of generated trajectories and
by presenting some obstacle-avoidance use cases (Section
III). Moreover, Section IV describes an extension of the
motion algorithms to the three-dimensional case. Finally,
Section V, contains practical guidelines for the implemen-
tation of the trajectory generator on a low-cost DSP or
microcontroller and reports real experimental results.

II. TWO-DIMENSIONAL TRAJECTORY GENERATION

The nonlinear filtering approach adopted in this paper has
been exploited first, for one dimensional motion, in [4], a
paper that describes the design of a Variable Structure (VS)
dynamic system acting as a smoothing filter for rough (steps,
discontinuous ramps, etc.) position reference signals. The
filter achieves perfect tracking of the reference signal in
minimum time, compatibly with constraints on the first and
second-order derivative of the filter output. The VS system
is composed by a chain of two integrators and a nonlinear
controller that guarantees the requirement on bounded output
derivatives and minimum time response. The block diagram
of the filter, in the discrete-time case1, is shown in Fig.1.

VARIABLE
STRUCTURE

CONTROLLER

T z
z - 1

x
.

n
x n

T (z + 1)
2 (z - 1)

r n un

U x
.

M

Fig. 1. Block diagram of a nonlinear filter for trajectory generation

The VS controller of the filter receives at each sampling
instant nT the following inputs: the position reference signal
rn and its time derivative ṙn, the current outputs of the

1All the filters described in the paper are discrete-time systems. The
sampling instant nT is dropped in all subsequent equations, to simplify
notation, and differentiation/integration are improperly denoted as the equiv-
alent continuous-time operations
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integrators (ẋn and xn), the bounds U on the accelera-
tion/deceleration and ẋM on the velocity absolute value.
Therefore, such bounds can be changed in real-time. The
control law proposed by [4] is a Sliding Mode (SM) con-
troller (see [5]), ensuring that the resulting trajectory always
reaches a sliding surface in the error phase plane (with
coordinates yn = xn − rn and ẏn = ẋn − ṙn), in minimum
time, without overshooting and without exceeding the bounds
U and ẋM . Once reached the surface, the SM brings the filter
towards a perfect tracking condition, which is also achieved
in minimum time.

The extension of this method to generate trajectories in
the two-dimensional operational space of a nonholonomic
mobile robot has been presented by [3]. The key idea is to
generate with two separate nonlinear filters, both structured
as shown in Fig. 1, linear velocity and orientation of the
trajectory, compatibly with dynamic constraints, and then
take into account kinematic constraints to obtain first-order
time derivatives of the trajectory in the cartesian space,
whose subsequent numerical integration defines the desired
position vector. Considering the class of unicycle-like mobile
robots, kinematic constraints require the robot configuration
vector [x, y, θ]T , being θ the orientation of the robot w.r.t. to
the fixed cartesian frame, to comply with:

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(1)

in which v and ω, respectively driving velocity and steering
velocity, are in most applications assumed as the control
inputs. Considering only the first two rows of Eq.(1), it is
clear that the generation of two sufficiently smooth signals
v(t) and θ(t) and the integration of ẋ and ẏ equals to
generate a trajectory compatibly with the kinematic model
of the unicycle. Dynamic constraints in the generation of
v(t) and θ(t) can be taken into account recalling that the
acceleration of a planar trajectory is given by the sum of
tangential and radial acceleration orthogonal vectors, whose
lengths are respectively at = v̇ and ar = v θ̇ = v ω. Both
components must be bounded to preserve the robot from
slipping. Limiting radial acceleration by reducing (without
zeroing) the driving velocity when ω �= 0, involves a
limitation also on the scalar curvature of the path, since the
latter is κ = ω/v = ω2/ar.

Minimization of time and space required to reach a given
target position can be achieved by maximizing linear veloc-
ity, within actuator limitation, when the robot is oriented
towards the target, and instead set driving speed as the
ratio between maximum allowed radial acceleration and
maximum steering velocity, when the robot must change
its orientation to point towards the target. The generation
of this change of orientation can be obtained following
the so-called planar pursuit-evasion approach and applying
the equations describing the geometric relationship between
a moving target, whose position and linear velocity are
denoted as [xt, yt]

T and vt in Fig. 2, and a tracking point,

characterized by [xd, yd]
T and vd in the figure. Such pursuit-

evasion equations can be found in [6].

v
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Fig. 2. Target interception geometry

In this section vt = 0 (i.e. fixed target positions) is
assumed, but the approach can be easily extended to consider
moving targets, as shown in Section III. If the orientation of
the trajectory generated by the filter is different from θe, then
this value should be set as the reference for the nonlinear
filter. During the turning phase necessary to align with the
target, steering velocity should be the highest possibile, while
driving velocity must be set to a maximum compatibly with
the bound on radial acceleration. Once that target alignment
is achieved, the final position is reached by triggering a
deceleration to zero velocity, as soon as the distance from
the target is equal to the space required to stop with given
bounds on v̇d and v̈d.

The block diagram of a nonlinear smoothing filter that
generates trajectories for a unicycle-like robot, in the way
just described, is shown in Fig. 3.
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Fig. 3. Block diagram of the nonlinear smoothing filter for mobile robotics

The block Velocity Nonlinear Filter of Fig. 3 is a filter
with the structure of Fig. 1, but its output is a driving velocity
vd (instead of a desired position), that perfectly tracks the
discontinuous reference velocity vr with bounds on first and
second-order derivatives (|v̇d| ≤ v̇M and |v̈d| ≤ Uv). The
Orientation Nonlinear Filter differs from the previous one
only in the calculation of the tracking error, which is limited
in the interval [−π;π]. The output of the filter is the desired
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orientation θd tracking at best θe with bounded derivatives
(|θ̇d| ≤ θ̇M and |θ̈d| ≤ Uθ).

The Switching Logic is a finite state machine that sets the
reference signals vr, θr and θ̇r (v̇r = 0 at any time) and the
bounds of the orientation filter. The state machine contains
four states, namely Turning, Aligned, Stopping and Limit
Speed, and it formalizes the target approaching sequence
previously described (see [3] for the full details of the state
machine).

The behavior of the Switching Logic and, therefore, the
resulting geometric properties of the trajectories generated
by the filter, depend on the following parameters:

• vM : maximum allowed driving velocity. It is set as a
reference for the Velocity Nonlinear Filter only when
the trajectory is aligned with the target (state Aligned).

• ARM : maximum allowed radial acceleration. It affects
the resulting curvature of the path and it is used to
calculate the driving velocity limit in the states Turning
and Limit Speed. The latter state is required to slow
down before starting a curve.

• θ̇B: maximum allowed steering velocity. It is used to
limit the rate of change of the orientation along a curve
(i.e. Turning state), when the Orientation Nonlinear
Filter is forced to track θe.

• Rstop: distance required to decelerate from vr = vM
to vr = 0. This value, used in the guard condition to
switch from state Aligned to Stopping, can be easily
calculated since the output of the velocity filter is a
standard profile with trapezoidal first-order derivative
(acceleration, in this case). Rstop is obtained integrating
further this velocity profile.

The outputs of the velocity and orientation nonlinear filters
must be combined as follows:

ẋd = vd cos θd
ẏd = vd sin θd

(2)

and integrated to finally obtain [xd, yd]
T . Higher order time

derivatives ẋd, ẏd, ẍd, . . . are bounded up to the third order
and can be calculated from the full output vectors of the two
nonlinear filters, with equations obtained by differentiation
of Eq.(2).

Remark 1: Target position [xt, yt]
T can be abruptly

changed at any time. This event causes θd �= θe and,
therefore, forces a reduction of driving velocity, set to
ARM/θ̇B before starting the turning phase. In this way, radial
acceleration is guaranteed to be bounded by ARM .

Remark 2: The second-order time derivatives of velocity
and orientation are bounded, so that also third-order deriva-
tives [

...
xd,

...
y d]

T are limited. Moreover, this implies that the
curvature of the resulting path is continuous.

III. VIA-POINT COMMUTATION AND CASE-STUDIES

The role of the discrete-time nonlinear filter described in
Fig. 3 is to calculate online a smooth trajectory approaching
and reaching a target position. At each sampling instant, the
output vector of the filter is updated according to the error
between the current orientation of the trajectory and the one

that allows to reach the target point, compatibly with kin-
odynamic constraints. The resulting cartesian path depends
inherently on the time-varying setting of target position. If
the aim is to generate a trajectory among obstacles, a key
issue that needs to be solved is the adequate placement of
a sequence of via-points and, in addition, the definition of
conditions for selecting online one of these via-points as the
target of the smoothing filter. These tasks could be executed
by a higher-level planning algorithm, that is aware of the
location of obstacles and of the geometric properties of the
trajectory generated by the filter.

In particular, there are two features of the proposed non-
linear filter that must be considered. First of all, the design
of the Switching Logic guarantees that radial acceleration
is bounded by ARM , by means of a Limit Speed state that
precedes any turn. Moreover, since θ̇d can only vary linearly
with a constant rate Uθ, it means that the curvature and its
time derivative are bounded by:

κM =
θ̇2B
ARM

; κ̇M =
Uθ θ̇B
ARM

(3)

Therefore, the trajectories generated with the proposed
approach have the same properties of Continuous-Curvature
paths (CC-paths) described by [7] or [8], namely they are
composed of linear segments, clothoid arcs (i.e. arcs with
linearly increasing curvature) and circular arcs of radius
κ−1
M . The key differences are that the trajectory generator

described in previous section does not compute esplicilty
the clothoids, since the latter are inherently the output of
the nonlinear filter, and that the resulting clothoid arcs are
specified w.r.t time, instead of arc length. Moreover, since the
driving velocity is exactly vd = ARM/θ̇B in any curved part
of the trajectory, by design, there is no need for a time-scaling
law to guarantee the geometry of the path or to comply with
dynamic constraints, which is instead the approach of [8].
The geometric features of CC-paths (see [7]) can be revisited
for the case under study considering the trajectory plotted in
Fig.4, including a curve near a via-point denoted with A. In
the figure, the current state of the nonlinear filter Switching
Logic is highligted by the color of the path. As can be seen,
the first part of the curve is a clothoid arc, more precisely
an arc whose sharpness is:

σM =
κ̇M
vd

=
Uθ

v2d
. (4)

The objective of this analysis is to determine the condition
for changing the target point of the nonlinear filter from a
via-point to another and obtain a smooth path that remains
as much as possible along the straight lines connecting via-
points. The key information that is required to evaluate this
condition is the length AB, which is the distance from the
via-point at which a curve must be initiated to obtain a
symmetric trajectory analogous to the paths described by [7].
Assuming, without loss of generality, that B is the origin,
from the theory of clothoids we obtain the coordinates of
B′, the point in which the curvature reaches the maximum
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Fig. 4. Trajectory generated by nonlinear filtering and Switching Logic
states: Limit Speed (purple), Turning with increasing curvature (green),
Turning with maximum curvature (red), Aligned (blue)

admissible value (CF and SF denote the Fresnel integrals):

xB′ =
√

π
σM

CF

(

√

κ2
M

πσM

)

yB′ =
√

π
σM

SF

(

√

κ2
M

πσM

) (5)

and the orientation:

θB′ =
κ2M
2σM

(6)

It is then possible to calculate the length BC, knowing
the maximum radius of curvature κ−1

M , and the angles μ, γ1,
γ2 and γ3, from basic trigonometry. Finally, applying known
theorems on triangles, we obtain:

AB = BC
sin γ3
sin γ1

(7)

It is important to note that all the results, excluding Eq.7,
depend only on the bounds applied to the nonlinear filter.
If such bounds constant, the only value that should be
calculated online and for each via-point is AB. Otherwise,
since the bounds of the nonlinear filter can also be changed
in real-time, this additional degree of freedom can be used
to increase the curvature of the trajectory in case of narrow
passages, in which the via-point should be approached as
much as possible.
Case study 1: path smoothing among static obstacles

Obstacle-avoiding paths among static obstacles can be
obtained by means of a properly defined interaction between
the nonlinear filter and a global planner. The latter can place
a set of via-points, using any collision-avoidance algorithm,
among the obstacles and can calculate for each via-point the
commutation distance (which is actually the sum of AB plus
the distance required to reduce linear velocity from vM to
ARM/θ̇B), so that continuous-curvature trajectories smooth-
ing straight-line paths remain collision-free. The complete

sequence of via-points, together with related commutation
distance, can be stored in a queue and can be managed online
by a simple algorithm, extracting from the queue a via-point
to be selected as the current target point of the filter and
continuously updating the distance from the output of the
filter to the via-point to promptly detect the commutation
condition. As an example, Fig. 5 shows a trajectory generated
applying a sequence of fixed via-points, marked by stars,
along a path composed of straight lines among obstacles
(grey rectangles). The target point of the nonlinear filter is
always changed exactly when the filter output is at a distance
from the current via-point such that at the end of the turning
phase, triggered by the target commutation, the trajectory is
exactly oriented along the straight line connecting the current
via-point with the subsequent one.

0. 5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

Fig. 5. Straight-line path among obstacles, with via-points (stars) and
resulting smooth trajectory generated by the nonlinear filter (red)

Case study 2: avoiding moving obstacles
The target point for the nonlinear filter can also have a

given linear velocity. A practical case that may be addressed
using this feature of the proposed nonlinear filter is a
highway-like context, in which slower vehicles move in the
same direction of the controlled mobile robot. If the robot
has to pass in front of the slower vehicle, it is possible apply
the following target point commutation strategy:

1) when the robot is behind the slow vehicle, the target is
set as a point aligned with the back of other vehicle,
but shifted at the left or at the right (if admissible) by
a given safety distance, and moving at the same speed
of the other vehicle;

2) once that the previous target is reached, the target is
shifted forward of a given distance and is kept moving
with a given velocity, slightly greater than that of the
slower vehicle;

3) once the the previous target is reached, the target is
set as a point in front of the other vehicle and is kept
moving with a given velocity, slightly greater than that
of the slower vehicle.
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At the end of this manoeuver, the robot has completed
the pass and has safely avoided the moving obstacle with
a smooth trajectory. An example of a trajectory achieving
this behavior is shown in Fig. 6, in which the three different
moving target points, as previously described, are denoted
with green triangles.

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

0.3

Fig. 6. Smooth trajectory (blue) to pass a slower robot (red) moving in
the same direction

IV. EXTENSION TO THREE-DIMENSIONAL SPACE

Another domain that could be of interest for the applica-
tion of the proposed online trajectory generation method is
the one of Unmanned Aerial Vehicles (UAVs). For a given
class of UAVs (e.g. fixed wing aircrafts), the target tracking
logic of the nonlinear smoothing filter can be extended to
the three-dimensional space by using the pursuit-evasion
geometry shown in Fig. 7.
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Fig. 7. Pursuit-evasion in three-dimensional space

In particular, it is assumed that the target point may have a
velocity directed as the x-axis of an (XT , YT , ZT ) coordinate
system, while the output of the trajectory generator has
an equivalent linear velocity directed as the x-axis of the
(XD, YD, ZD) coordinate system. These coordinate systems
are specified by the coordinates [xt, yt, zt] and [xd, yd, zd]
of their origin w.r.t. the reference system (XI , YI , ZI) and
by their azimuth angle ψ and elevation angle θ. In the
figure, (ψL, θL) denotes the orientation of the line of sight
(LOS) vector w.r.t. the reference system, while (ψtL, θtL)
and (ψdL, θdL) denote the orientation respectively of the
target velocity and the velocity of the output trajectory w.r.t.
to (XL, YL, ZL), the LOS coordinate system.

A smooth three-dimensional trajectory reaching the target
point, in the sense that the length of the LOS vector R

tends to zero, can be computed by a nonlinear filter with
a structure similar to the one shown in Fig. 3, but including
three different one-dimensional nonlinear filters: one for the
linear velocity vd and two for the azimuth and elevation
angles (ψd, θd), w.r.t. the reference system. The final output
of the trajectory generator can be computed according to the
following kinematic model:

ẋd = vd cosψd cos θd
ẏd = vd sinψd cos θd
żd = vd sin θd

(8)

The switching logic of the three-dimensional trajectory
generator is also similar to the one described in Section
II, but it sets the reference signals for the two smoothing
filters related to orientation angles using the pursuit-evasion
equations described, among others, in [9], here omitted for
brevity.

Remark 3: The kinematic model of Eq. 8 is compatible
with the motion of a fixed wing UAV, assuming that the
dynamics of the autopilot can be neglected. This model can
also be used for trajectory tracking control design based on
dynamic feedback linearization, as shown in [10].

Remark 4: With the nonlinear filter based on the kine-
matic model of Eq. 8 it is possibile to obtain trajectories with
bounded curvature, but it is more difficult to apply a via-point
commutation strategy based on the theory of clothoids, as
described in Section III. For some applications (e.g. motion
planning of robotic manipulators instead of UAVs), it would
be preferable to preserve strict alignment with the straight-
line path connecting via-points. In that case, the commuta-
tion strategy of Section III can be extended to the three-
dimensional space by using the two-dimensional nonlinear
filter, constrained on the plane containing three subsequent
target points, and mapping the output of filter from 2D to
3D by using properly calculated transformation matrices. An
example of a three-dimensional trajectory generated by the
proposed nonlinear filter from a starting point to a final one
with a single via-point is shown in Fig. 8.

V. IMPLEMENTATION AND EXPERIMENTS

The proposed nonlinear filter has been tested on a in-house
built differential-drive platform, with custom electronics. The
trajectory generation algorithm described in Section II have
been implemented on a motion control card based on a
dsPIC30F by Microchip Technology, which is a 16-bit fixed-
point Digital Signal Controller (DSC) executing up to 30
MIPS. The DSC implements also the dynamic feedback
linearization controller described in [3].

The performance of the DSC have been optimized using
only fixed-point computations and proper scaling of the
variables in the code, to avoid as much as possibile the use of
division operations. The full implementation of the trajectory
generator of Fig.3 is computed by the DSC in less than
700 μs, which allowed to safely set the sampling frequency
of the full control system at 256 Hz (i.e. 28 Hz or T =
3.90625 ms). Finally, a global planner can interact with the
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Fig. 8. Example of 3D smooth trajectory generated by the proposed
nonlinear filter.

trajectory generator by setting the sequence of cartesian via-
points, together with related via-point commutation distance,
through serial communication.

In its current form, the implementation of the trajectory
tracking control loop exploits the feedback obtained from
wheel odometry estimates and their numerical differentiation.
Even if this estimate may be enhanced using inertial sensors,
the control performance can be fairly evaluated on the basis
of the norm of the tracking error w.r.t. odometry. This norm,
measured during experiments on the reference trajectory of
Fig.5, is always lower than 11.5 mm, with an average value
of 3.9 mm. Fig. 9 shows the error measurements in the two
distinct coordinates. These good tracking performances are
better than those described by [11] and [12], which used
robots with comparable dynamic performances and similar
control methods. It is also important to remark that in these
experiments only a 16-bit DSC-based control board has
been used, while [11] and [12] used also powerful PCs
equipped with Intel Pentium II or Core 2 Duo processors
and floating-point capabilities, even though running control
loops at slower frequencies (respectively 20 Hz and 35 Hz)
because of overall system load.

In particular, Fig. 9 shows that even during initial transient,
in which the robot accelerates from zero to maximum linear
velocity, tracking is accurate thanks to the feedforward
action, the compensation of robot dynamics by means of
driving force τd and steering torque τs control inputs and
the smoothness of generated trajectory.

Further information and full source code of
the firmware for the motion control board used
in the experiments can be downloaded from
http://sact-unife.googlecode.com.

VI. CONCLUSION

The paper has described an approach to trajectory gen-
eration for mobile robots based on the theory of nonlinear
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Fig. 9. Tracking error in the cartesian space

smoothing filters. The trajectories obtained from the filter
have continuous curvature and are inherently compatible with
kinematic and dynamic constraints of a classical unicycle-
like robot. Accurate trajectory tracking can be achieved with
a control system based on I/O linearization with dynamic
state feedback. A global path planner can interact with the
trajectory generator by simply setting sequences of fixed via-
points or reference points moving along non-smooth and
obstacle-free paths.
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Multi-axis High-order Trajectory Planning

Ben Ezair1 Tamir Tassa1 Zvi Shiller2

Abstract— This paper presents a trajectory planning algo-
rithm for multi-axis systems. It generates smooth trajectories
of any order subject to general initial and final conditions,
and constant state and control constraints. The algorithm is
recursive, as it constructs a high order trajectory using lower
order trajectories. Multi-axis trajectories are computed by
synchronizing independent single-axis trajectories to reach their
respective targets at the same time.

The algorithm’s efficiency and ability to handle general
initial and final conditions make it suitable for reactive real
time applications. Its ability to generate high order trajectories
makes it suitable for applications requiring high trajectory
smoothness. The algorithm is demonstrated in several examples
for single- and two-axis trajectories of order 2− 6.

I. INTRODUCTION

The trajectory planning problem, in the context of robot

motion, is the problem of generating a trajectory in the

robot’s state space that connects given initial and final

states, subject to state and control constraints, and is optimal

with respect to some given cost function. A trajectory is

essentially a time-parameterized path between two points in

the configuration space. While path planning has traditionally

been concerned with generating the shortest path that avoids

obstacles, trajectory planning is concerned in addition with

the robot’s dynamic behavior by imposing constraints on

the robot’s velocity, acceleration, jerk and possibly higher

derivatives. Bounding the motion derivatives yields smooth

trajectories, which can be tracked with smooth control inputs

that do not excite high vibration modes. In addition, they

increase tracking accuracy [11]. The number of bounded

derivatives in the trajectory is called the order of the tra-

jectory.

Several approaches for trajectory generation have been

developed. One approach uses polynomials or other functions

to approximate the desired trajectories. Piazzi and Visioli

[13] optimize cubic splines to minimize jerk for a specified

motion time. Petrinec and Kovacic [12] use 4th and 5th

order polynomials to produce smooth multi-axis trajectories.

Macfarlane and Croft [10] compute trajectories that are

represented by fifth-order polynomials.

Another approach for trajectory generation is to divide

the trajectory into segments where the value of the highest

derivative is constant in each segment. Liu et al. [9] present

an algorithm that produces a third order trajectory that is

constructed by dividing the trajectory to seven segments.

1Ben Ezair and Tamir Tassa are with The Department of Mathematics and
Computer Science, The Open University, Israel. ben e@hotmail.com
& tamirta@openu.ac.il

2Zvi Shiller is with the Department of Mechanical Engi-
neering and Mechatronics, Ariel University Center of Samaria.
shiller@ariel.ac.il

This approach is used to produce multi-axis trajectories by

synchronizing several single-axis trajectories [1], [2], [5].

Haschke et al. [4] emphasize the online capabilities of their

algorithm that is designed to produce a third order halting

trajectory. Works by Kroger et al. [6], [7] also focus on

online algorithms, using a thorough analysis of possible

acceleration profiles to handle more general initial and fi-

nal conditions. Lambrechts et al. [8] produce fourth order

trajectories. Nguyen et. al. [11] developed an algorithm that

generates trajectories of arbitrary order with zero initial and

final conditions and symmetric state and control constraints.

It is based on dividing the trajectory into a recursive structure

of S-curve segments. The use of S-curves forms also the

basis for the algorithm which we present herein.

A. Our algorithm

This paper presents a novel algorithm for planning tra-

jectories of arbitrary order between arbitrary initial and

final states (position and its time derivatives), subject to

arbitrary constant state and control constraints, which is

geared towards minimizing motion time. The generality of

our approach makes the algorithm suitable for both online

and offline trajectory planning. The algorithm is recursive,

as it reduces the original problem of order m to problems

of order m − 1, until it reaches basic problems that can be

solved directly. The algorithm is also modular, as it may

accept any external solver for the basic trajectory generation

problem which is solved directly in order to terminate the

recursion. The algorithm is efficient, as demonstrated in

several experiments (see Table II in Section II-B.2).

Finally, the basic algorithm is extended to generate multi-

axis trajectories by synchronizing single-axis trajectories to

reach their respective targets at the same time.

Table I compares our algorithm with a few comparable al-

gorithms that were presented in the above described studies.

Most of the comparable algorithms are limited in the order

of the trajectories that they may produce, or in the initial and

final conditions that they may accept. Our algorithm’s main

advantage is its generality and flexibility, as it is applicable

to a wider range of scenarios than the other algorithms.

II. SINGLE-AXIS TRAJECTORIES

We wish to compute a pair 〈T, x(t)〉, where x(t) denotes

the position of a moving object along a given axis, such that

(a) x(t) satisfies given initial and final conditions at t = 0
and t = T ,

x(0) = x0
s , x(i)(0) = xi

s , 1 ≤ i ≤ m− 1 , (1)

x(T ) = x0
f , x(i)(T ) = xi

f , 1 ≤ i ≤ m− 1 , (2)

Workshop on Robot Motion Planning: 
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012
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Ref. Order Initial & Final Conditions Online Optimal

[6] 2 general yes yes
[2] 3 zero acceleration yes yes
[4] 3 ends at rest yes yes
[7] 3 zero final acceleration yes yes
[8] 4 rest to rest no no
[11] any rest to rest no no
Ours any general yes no

TABLE I

COMPARISON OF TRAJECTORY GENERATION ALGORITHMS

where x(i)(t), i ≥ 1, is the i-th order derivative of x(t); (b)

it is constrained by constant lower and upper bounds,

xi
min < 0 < xi

max , 1 ≤ i ≤ m (3)

xi
min ≤ x(i)(t) ≤ xi

max , t ∈ [0, T ] , 1 ≤ i ≤ m ; (4)

and (c) the time T =
∫ T

0
1dt is minimized. The number

m ≥ 1 of constrained derivatives is called the order of the

problem. A pair 〈T, x(t)〉 that satisfies the initial and final

conditions, (1)–(2), and the lower and upper bounds (4) is

called a feasible solution. A solution is optimal if is feasible

and minimizes T .

This single-axis trajectory planning problem may be

viewed as a time optimal control problem of a linear system

of ordinary differential equations with m state variables (be-

ing the position function x(t) and its first m−1 derivatives)

and a single control variable (being the m-th derivative

x(m)(t)), subject to initial and final conditions and state

and control constraints. The structure of the optimal control

for such problems can be shown to have a bang-zero-bang

structure [3].

The solution for the case m = 1 is trivial, consisting of

a constant velocity motion. The solution for m = 2 was

derived in [6]. Our approach in solving higher order problems

is recursive, as it reduces a problem of order m to problems

of order m − 1, repeatedly, until m = 2, in which case the

problem can be solved directly.

A. A single-axis trajectory planning algorithm

1) Overview: The algorithm for computing high order

trajectories is motivated by the observation that integrating

a bang-zero-bang control profile yields an S-curve structure.

A typical S-curve can be divided into three segments: (I)

acceleration from the initial state; (II) cruising at a constant

velocity; and (III) deceleration to the final state. This struc-

ture, as illustrated in Figure 1 for m = 3, repeats recursively

since the velocity profile, as well as the profiles of higher

derivatives, consist of two or more S-curve segments.

The recursive algorithm looks for a solution with an S-

curve position profile. The main loop attempts to find the best

value for the constant velocity in segment II. Given a can-

didate value v for that velocity, the algorithm computes the

velocity profile in segments I and III by invoking recursion.

Specifically, it solves in each of those segments a reduced

order trajectory planning problem for the velocity profiles.

Once the velocity profiles in all three segments are found, the
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Fig. 1. The recursive structure of the trajectory

algorithm checks that the corresponding position profile is a

feasible solution. When the resulting solution is non-feasible,

the algorithm reduces |v|; when the resulting solution is

feasible, the algorithm increases |v| in order to reduce motion

time. The algorithm terminates when the optimal value of v
is found within some predetermined accuracy, and it outputs

the found position profile x(t).

2) Detailed description: We proceed to describe the op-

eration of Algorithm 1 that implements the above procedure.

The algorithm accepts as inputs the problem order, the initial

and final conditions, and the lower and upper constraints. It

outputs a feasible solution 〈T, x(t)〉 which is time-efficient

and in some cases optimal.

If m = 2 the algorithm outputs the analytic solution (Step

1). Otherwise, we set ∆x to be the distance to be traveled

(Step 2) and start a binary search for v within the allowed

range of values [x1
min, x

1
max]. The variables vmin and vmax

hold the lower and upper limits of the search range; they are

initialized in Step 3. The variable v̂ holds the last value of v
that produced a feasible solution. It is initialized to an illegal

value (x1
max + 1) in Step 3, and so is v.

During the binary search (Steps 4-18), we consider the

midpoint of the current range as the candidate value for v
(Step 6). Given a candidate value for v, the trajectory plan-

ning problem in the acceleration and deceleration segments

(I and III) are well defined and can be solved by invoking

recursion. Let v1(t) be the velocity profile in segment I,

from the initial value x1
s to the cruising velocity v, and

let τ1,v denote the duration of that segment. Then in Step

7 we compute 〈τ1,v, v1(t)〉 by solving a problem of order

m − 1 for x′(t) along that segment. The initial conditions

for that reduced order problem are (x1
s, . . . , x

m−1
s ); its final

conditions are (v, 0, . . . , 0) (since we wish to reach the

velocity v with all higher derivatives zero); and the lower and

upper bounds on the derivatives are in accord with those of

the original problem. Similarly, we invoke recursion in Step

8 to compute v3(t), the velocity profile in segment III, from

v to the final value x1
f , and the corresponding duration τ3,v .

Next, we compute the distance covered in segments I and

III, ∆x1 and ∆x3 (Step 9). ∆ is the remaining distance
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that needs to be traveled in the intermediate segment II in

order to complete a journey of length ∆x. Since the velocity

along segment II is constant and equals v, the duration of

that segment should be τ2,v = ∆/v (Step 10). If τ2,v is

nonnegative, then this tested value of v leads to a valid

trajectory; in that case we record that value of v in the

variable v̂ (Step 11).

The search ends once the lower and upper limits of the

search are sufficiently close (Steps 12-14). In that case, we

set v, vmin and vmax to be the last value of v that produced

a valid solution. If v̂ still equals its initial value x1
max + 1

(a forbidden value for v, as it is outside the allowed range

[x1
min, x

1
max]), then the search failed to find a valid v. This

may occur if the problem parameters define a range of

legitimate v values that is smaller than ε, and, consequently,

cannot be captured using a binary search with such accuracy.

(We note that instead of using the same value of ε for all

levels, we may define for each level i, 1 ≤ i ≤ m, a different

value εi.) Otherwise, if v̂ is a legal value, then the algorithm

performs another iteration. Since v, vmin, and vmax equal

the last valid value of v, the subsequent setting of last v
and v in Steps 5-6 will cause the algorithm to perform the

next iteration with v = v̂ and then terminate the loop when

it examines the termination condition in Step 18.

In case the lower and upper limits of the search are still far

apart, we check the value of ∆ to determine how to proceed

with the search: if ∆ > 0, then we examine profiles with

higher values of v (Step 15); if ∆ < 0, we consider lower

values of v (Step 16); if ∆ = 0, we terminate the search by

setting last v to equal v (Steps 17). The search ends when

last v = v. After determining the value v, we compute T
and construct the profile of x′ as the concatenation of three

segments – v1(t), v,v3(t) (Steps 19-20). Finally, we integrate

x′(t) to obtain x(t) (Step 21).

3) A note on optimality: Algorithm 1 uses a simple greedy

approach in the search of a solution with a minimal motion

time. The solution is optimal for rest-to-rest motions of order

m ≤ 3. (The proof of this claim is deferred to the full version

of this paper.) Although Algorithm 1 attempts to minimize

motion time, the solution is not necessarily optimal, because

the algorithm is based on two assumptions that are not always

satisfied:

(A1) The duration of segment II is a continuous and

monotonic function of v.

(A2) The velocity during segment II is constant, implying

that during this phase all higher derivatives are zero.

The first assumption affects the way the algorithm updates

v (steps 15-16). If this assumption is not satisfied, the

algorithm may choose a value of v that will result in a

non-optimal motion time. The second assumption is more

central to Algorithm 1, as it allows us to subdivide the

trajectory into two S curves that can be joined together with

a simple constant velocity motion. However, this assumption

is not always true, e.g. in cases where the optimal trajectory

either always accelerates or always decelerates. In such cases,

the algorithm would return a solution that is of a different

structure than that of the optimal trajectory.

Algorithm 1 ComputeTrajectory

Input:

(1) The system order m ≥ 2.
(2) Initial and final states: xi

s, x
i
f , 0 ≤ i ≤ m− 1.

(3) Bounds: xi
min, x

i
max, 1 ≤ i ≤ m− 1.

Output: A feasible solution 〈T, x(t)〉.

1: if m = 2 then return the analytic solution and stop.

2: ∆x = x0
f − x0

s.

3: vmin = x1
min, vmax = x1

max, v = v̂ = x1
max + 1.

4: repeat

5: last v = v.

6: v = (vmax + vmin)/2.

7: 〈τ1,v, v1(t)〉 ← ComputeTrajectory[m− 1,
(x1

s, . . . , x
m−1
s ), (v, 0, . . . , 0), {(x2

min, x
2
max)}

m
i=2]

8: 〈τ3,v, v3(t)〉 ← ComputeTrajectory[m− 1,
(v, 0, . . . , 0), (x1

f , . . . , x
m−1
f ), {(x2

min, x
2
max)}

m
i=2]

9: ∆x1 =
∫ τ1,v

0
v1(t)dt; ∆x3 =

∫ τ3,v

0
v3(t)dt.

10: ∆ = ∆x−∆x1 −∆x3; τ2,v = ∆/v.

11: if τ2,v ≥ 0, v̂ = v.

12: if |vmax − vmin| ≤ ε then

13: v = vmin = vmax = v̂.

14: if (v̂ = x1
max + 1) then stop and output “Failed”.

15: elseif ∆ > 0 then vmin = v
16: elseif ∆ < 0 then vmax = v
17: else last v = v endif

18: until last v = v
19: T = τ1,v + τ2,v + τ3,v .

20: x′(t) =







v1(t) [0, τ1,v]
v [τ1,v, τ1,v + τ2,v]
v3(t− τ1,v − τ2,v) [τ1,v + τ2,v, T ]

21: Return 〈T, x(t)〉, where x(t) =
∫ t

0
x′(τ)dτ + x0

s.

Both assumptions make the algorithm efficient by limiting

the number of possible trajectory forms we need to consider.

This, in turn, greatly simplifies the search for segment II that

connects segments I and III. It is possible to remove these

assumptions, while keeping the recursive structure of the

algorithm, and produce the optimal trajectory by exhaustively

searching for the initial and final conditions of segment II, at

the obvious cost of increasing the computational complexity.

B. Experiments

1) Examples of trajectories: We tested Algorithm 1 for

high order trajectories (with orders up to m = 7) with zero

and non-zero initial and final conditions. Figure 2 shows

trajectories computed by the algorithm for various values of

m, ∆x = 50, zero initial and final conditions (xi
s = xi

f = 0,

1 ≤ i ≤ m − 1); the state constraints in this example were

|x(i)
| ≤ 102+i. These results show that motion time and

smoothness increase with the trajectory order, because of

the added limits on higher derivatives. The m = 2 profile

in Figure 2 is the fastest, but it is not smooth as already its

acceleration profile is discontinuous. The m = 6 profile, on

the other hand, is the slowest, but it exhibits discontinuities

only in its sixth derivative.
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Fig. 2. Trajectory position (top) and velocity (bottom) for m = 2, 3, 4, 5, 6

Figure 3 shows a solution for the same setting as in Figure

2, for m = 4, except that the initial and final conditions on

the velocity are nonzero: x1
s = 70 and x1

f = 60.

All of the these solutions share the familiar bang-zero-

bang pattern.

2) Runtimes: The algorithm was implemented in C++

and was executed as a normal priority process on an Intel

Pentium D 3.0 GHz processor, using a normal Microsoft

windows XP system.

Table II shows the average runtimes of Algorithm 1 for

various values of m, when executed with the same inputs as

used to generate the trajectories in Figure 2. The parameter

εi was set so that the accuracy is 0.01%, i.e.,
xi

max
−xi

min

εi
=

0.0001 for all i. For each m, the average runtime was

computed by averaging several runs of the algorithm. As

can be seen in Table II, the runtime changes exponentially

with respect to m, since the algorithm is recursive in m. As

m is always a small integer, that exponential dependence on

m poses no practical problem.

We note that Algorithm 1 may be parallelized, as Steps 7

and 8 are independent of each other and could be executed

in parallel. It is therefore possible to reduce the runtime by

a factor of up to 2m−2 on a multi-core CPU, depending on

the number of processes that can be executed in parallel.

III. MULTI-AXIS TRAJECTORIES

The single-axis trajectory planning algorithm can be

used for solving multi-axis trajectory planning problems.

We wish to compute a pair 〈T, (x1(t), . . . , xn(t))〉, where

(x1(t), . . . , xn(t)) is a function that connects two points

in the Euclidean space R
n in minimal time, subject to the

following constraints: (a) xj(t) satisfies given initial and final
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Fig. 3. 4th order trajectory position (top) and velocity (bottom) with
nonzero initial and final conditions

Order Number of runs Average runtime [s]

3 1000 0.000074
4 1000 0.002141
5 10 0.0625
6 10 1.9515
7 10 80.064

TABLE II

RUNTIMES (SECONDS) FOR SEVERAL PROFILE ORDERS

conditions at t = 0 and t = T ,

xj(0) = xj,0
s , x

(i)
j (0) = xj,i

s , (5)

xj(T ) = xj,0
f , x

(i)
j (T ) = xj,i

f , (6)

where 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n (hereinafter the index

j denotes the axis while i denotes the derivative order); (b)

it is constrained by constant lower and upper bounds,

xj,i
min ≤ x

(i)
j (t) ≤ xj,i

max , t ∈ [0, T ] , (7)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n; and (c) the time T =
∫ T

0
1dt is minimized.

To solve the multi-axis trajectory planning problem, we

begin by first solving the n independent single-axis prob-

lems. For each axis 1 ≤ j ≤ n, we get a single-axis

trajectory, xj(t), that satisfies the initial and final conditions

and kinematic bounds along that axis, and completes the

journey in minimal time. The goal is now to combine those

n single-axis trajectories, each reaching its final position

at a possibly different time, into one multi-axis trajectory,

(x1(t), . . . , xn(t)). This is done by identifying the slowest

axis, and then “stretching” the trajectories along the other

axes so that they all reach their respective target at the same
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Fig. 4. Trajectories — position (top) and velocity (bottom) for m =

2, . . . , 6, with Text = 1.5

time. The stretching procedure may be repeated until all

single-axis trajectories reach their target at the same time.

In order to stretch a trajectory that was generated by

Algorithm 1, we slightly modify the function ComputeTra-

jectory that the algorithm implements into a new function,

called ComputeTrajectory-TimeLimit. That function receives

the same inputs as ComputeTrajectory, and one additional

positive scalar parameter denoted Text. It then proceeds to

generate a trajectory that complies with the given inputs

and takes minimal time that is no less than Text. To that

end, if the modified algorithm generates a trajectory that

reaches its goal in less than Text, it slows down the motion

by decreasing the absolute value of v, the constant velocity

during segment II. Specifically, if the value of v for the faster-

than-Text solution is positive, the algorithm lowers the upper

bound of the binary search so that it examines smaller values

for v; if, on the other hand, the value of v for the faster-

than-Text solution is negative, the algorithm sets it as the

lower bound of the binary search to explore higher values

for v. To achieve the above described functionality, the only

modification that needs to be introduced is adding the next

command after Step 11: if (τ2,v > 0) and (τ1,v+τ2,v+τ3,v <
Text) then ∆ = −∆.

To illustrate the effect of calling the modified function

ComputeTrajectory-TimeLimit with a positive Text, we ran

the algorithm with various values of m, ∆x = 1, zero initial

and final conditions (xi
s = xi

f = 0, 1 ≤ i ≤ m − 1),

state constraints |x(i)
| ≤ 2 · 10i−1, and set Text = 1.5. The

resulting trajectories, for m = 1, . . . , 6, all with travel time of

T = 1.5, are shown in Figure 4. Note that all trajectories use

a cruising velocity well below the upper velocity constraint

in order to comply with the given lower bound Text = 1.5
on the motion time.

Algorithm 2 solves the multi-axis problem, for any number

of axes, iteratively by searching for the shortest common

motion time. It saves in Tmax the duration of the currently

slowest trajectory, and in sync the number of axes along

which it already found a feasible solution with motion time

Tmax (or at least a motion time T ∈ [Tmax, Tmax + θ],
where θ is a small parameter that determines the desired

level of accuracy). To that end, after initializing those two

variables (Step 1), it starts a cyclic loop over all axes (Steps

2-9) in search of the smallest value of Tmax for which there

is a feasible solution along each of the n axes with motion

time T ∈ [Tmax, Tmax + θ]. In order to synchronize the

single-axis trajectories, Algorithm 2 computes a trajectory

along each axis by invoking the modified Algorithm 1

(namely, the function ComputeTrajectory-TimeLimit) with

Text that equals the current slowest motion time (Step 4). If

ComputeTrajectory-TimeLimit succeeds in finding a feasible

solution with T ∈ [Tmax, Tmax + θ], it records that success

by increasing sync (Step 5). Otherwise, the found feasible

solution ends in time T > Tmax + θ; in that case, Tmax

is reset to T , and sync is reset to 1 (Step 6). The loop

ends only when sync = n (Step 9), since then all single-

axis trajectories have the same duration (up to a tolerable

difference of θ). The algorithm then stops and returns the

found feasible multi-axis solution (Step 10).

Algorithm 2 SynchronizeTrajectories

Input:

(1) The system order m ≥ 1.
(2) The number n ≥ 1 of trajectories that need to be synchronized.
(3) An accuracy parameter for the motion time, θ ≥ 0.
(4) Initial values: xj,i

s , 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.
(5) Final values: x

j,i

f , 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.

(6) Bounds: x
j,i
min ≤ 0 ≤ xj,i

max, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Output:

(1) Total motion time, T > 0.
(2) Trajectories xj(t), 1 ≤ j ≤ n, that satisfy the input constraints,

each spanning the time T .

1: Tmax = 0; sync = 0.

2: j = 1.

3: repeat

4: 〈T, xj(t)〉 ← ComputeTrajectory-TimeLimit[m,
(xj,0

s , . . . , xj,m−1
s ), (xj,0

f , . . . , xj,m−1
f ),

{(xj,i
min, . . . , x

j,i
max)}

m
i=1, Text = Tmax]

5: if T − Tmax ≤ θ then sync = sync+ 1
6: else Tmax = T , sync = 1
7: j = j + 1.

8: if j = n+ 1 then j = 1
9: until sync = n

10: Return 〈Tmax, (x1(t), . . . , xn(t))〉.

Example. This example demonstrates the use of Algo-

rithm 2 to generate a trajectory that passes through four

points in the plane with specified velocities and accelerations.

The resulting trajectory demonstrates the algorithm’s ability

to produce a high-order continuous path.

Let A = (0, 0), B = (20, 0), C = (20, 20), and D =
(0, 20) be four points in the x−y plane. We wish to move a
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Fig. 5. Trajectories along a square path as described in Example 2: Scenario 2 (left), 3, and 4 (right).

body through these points, A→ B → C → D → A, starting

and finishing at rest. We consider trajectories of order m = 3
with the following bounds along each of the four motion

segments: |x(i)
| ≤ 102+i, 1 ≤ i ≤ m.

We examine four scenarios that differ in the inner corner

velocities and accelerations, at B, C and D. In Scenario

1, the body reaches a full stop in each inner corner before

continuing its motion. In Scenario 2, the velocity in each

inner corner is 50 in the direction leading to the corner, and

the acceleration there is zero. In Scenario 3, the corner veloc-

ities are counterclockwise 45o rotations of the corresponding

corner velocities in Scenario 2 (so that the velocity at B, for

example, is (50/
√

2, 50/
√

2) instead of (50, 0) as it was in

Scenario 2); the acceleration in each corner is set to zero.

This adjustment of the velocity to the right-angle turn in each

corner results in a shorter overall motion time with respect

to Scenario 2. Finally, Scenario 4 is identical to Scenario

2 except for the acceleration values in the inner corners.

These acceleration values are designed so that the moving

body begins accelerating for the next motion segment earlier,

in order to reduce the overall motion time. The acceleration

values are (−2000, 2000) at B, (−2000,−2000) at C, and

(2000,−2000) at D. The trajectories in Scenarios 2, 3 and

4 are shown in Figure 5. (The trajectory in Scenario 1 is not

shown since it is a perfect square.)

As expected, the motion time in Scenario 1 is the longest,

T1 = 0.743. In Scenario 2, where the body is not forced

to stop in each inner point, it is T2 = 0.701. In Scenario

3, in which the corner velocities are better adjusted to

the counterclockwise turns in each corner, the motion time

reduces to T2 = 0.683. Finally, in Scenario 4, with the added

benefit of acceleration conditions, the body completes the

journey in time T4 = 0.620.

IV. CONCLUSION

This paper presented a trajectory planning algorithm for

single and multi-axis a trajectories, subject to general initial

and final conditions and derivative bounds. It is based on

a recursive process that reduces the original high order

trajectory problem to lower order problems. The recursion

is applied until reaching low orders (m = 1 or m =
2) for which a direct solution is available. The resulting

algorithm is simple and efficient, as was demonstrated in

our runtime results. The proposed algorithm can be used off-

line to produce high order trajectories, as well as on-line in

applications where efficiency and reactiveness are essential.

In this paper we focused on multi-axes trajectories with

no concern to geometrical constraints, apart from the initial

and final positions. Extending our algorithm to account for

geometrical constraints, such as imposed by obstacles or by

a specified path, is a subject of future research.
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Online, Adaptive, and Distributed Multi-Robot Motion Planning for

Collaborative Patrolling of Sparse Sensor Networks

Theofanis P. Lambrou and Christos G. Panayiotou

Abstract— This paper presents an online, adaptive, distribu-
tive and collaborative path planning method for a team of
autonomous mobile sensors that enables them to navigate
through a sparse network of stationary sensors to search for
events and improve the spatio-temporal coverage of the sensor
field. The mobile sensor nodes have limited communication
and sensing ranges and collaborate to autonomously plan their
trajectories, adapt to the local region they monitor and enhance
the area coverage over time under constrains like obstacles,
collisions and limited communication. In this context, this paper
addresses the trade off between area coverage and mobiles’
travelled distance and proposes an adaptive speed model to
minimize the distance the mobiles travelled and hence the
energy needed for mobility. Finally, simulation results indicate
the effectiveness of the proposed approach over a centralized
partitioning approach under mobile sensors failures.

I. INTRODUCTION

This article investigates the path planning problem for

improving the coverage and detection performance of mixed

WSNs consisting of both static and mobile nodes. With

recent advances in distributed robotics and low power em-

bedded systems, such mixed WSNs are becoming attractive

as covering complectly a large region of interest with static

sensors requires excessively dense deployments which im-

plies prohibitive cost. However, controlling the motion of

mobile sensor-robots in such distributed environments is of-

ten complicated by factors as resource constraints on sensing,

motion, communication and computation capabilities, uncer-

tain nature of the environment (e.g. obstacles, hazards, node

failures) and distributed-asynchronous information sharing.

Such mixed WSNs are expected to find potential ap-

plications in environmental monitoring (e.g. water bodies

monitoring) as well as search and surveillance operations.

Search and surveillance is a problem that has attracted

significant attention over the past years, however, there is

significant focus on how to allocate search effort across the

environment instead of finding the best search path to follow

[1], [2]. Recently, wireless sensor networks (WSNs) have

been proposed to address the area monitoring or surveillance

problem with either stationary nodes [3], [4], mobile [5], [6],

[7], [8], [9] or both types of nodes [10], [11], [12], [13].

Mixed/Mobile WSNs is a new area of research and methods

proposed usually considered random mobility models [5],

[11], [14] or they do not even consider the actual path

that mobile nodes should follow [6],[15] (e.g. solve the

redeployment problem). Moreover, other methods proposed

T. Lambrou and C. Panayiotou are with the KIOS Research Center
for Intelligent Systems and Networks and the Department of Electri-
cal and Computer Engineering, University of Cyprus, Nicosia, Cyprus.
{faniseng,christosp}@ucy.ac.cy

for finding the worst-case coverage path [16] do not consider

the complete coverage-search problem and provide only a

single path between two given points in a centralized and

static manner (do not consider changes in the field) and hence

do not support multiple mobile nodes.

In [12], an architecture is developed that enables the col-

laboration of mobile and stationary sensor nodes in WSNs.

Mobile sensors plan their trajectories to sample the least

covered areas by the stationary sensor nodes. The framework

developed is easily scalable to large numbers of mobile sen-

sor nodes and for different WSNs deployments and enables

mobile sensors to compute their path on-line using only

“local” information and adapt to the sensor field changes.

This paper extends and generalizes the framework proposed

in [12] by incorporating a probabilistic sensing model and

a dynamic speed policy. In addition, the approach is now

applicable for mobile nodes with variable speed and sensor

fields that include obstacles. The main contribution of this

paper is the development of an adaptive speed policy that

maximizes the area coverage and at the same time minimizes

the total distance travelled by mobiles (energy needed for

mobility).

The remaining of the paper is organized as follows.

Section II presents the distributed-collaborative path planning

framework for mixed WSNs. Section III investigates the

performance of the proposed framework and presents the

simulation results. Finally, the paper concludes with Sec-

tion IV.

II. PATH PLANNING FRAMEWORK

In this section we present a collaborative framework where

the mobiles nodes autonomously decide their path to sample

the areas least covered. In this architecture, at every step, the

mobiles define a “local” area around their current location

and identify the biggest coverage hole which becomes their

next target point. Target points are then updated in a receding

horizon like scheme. This approach works well and given

enough time complete area coverage can be achieved.

At this point its worth pointing out that alternative path

planning approaches like potential function techniques usu-

ally fail to address the problem under consideration as they

get stuck in local minima or oscillate between two closest

points [17]. Solutions provided to overcome the problem

of local minima, when planning with potential functions,

like wave-front planner [18], and navigation functions [19],

[20] still fail to address the problem. Wave-front planner

needs to search the entire space for a path each time the

path is updated which is computationally intractable. On the

Workshop on Robot Motion Planning: 
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2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
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other hand, navigation functions assumed that obstacles are

circular disks that do not intersect and the configuration space

is bounded by a sphere (or a star) space. These assumptions

are not satisfied in our setting.

Therefore, efficient path planning under random static

sensor deployments is complicated, especially when the

algorithm is intended to be robust to the sensor field density.

To resolve these issues we have developed dynamic receding

horizon policy which constitutes of appropriate normalizing

path cost functions. It should be pointed out that the proposed

path planing method is also applicable when static sensors

are absent and thus mobile robots plan there trajectories to

patrol or cover the given area under surveillance.

A. Sensor Network Model

We consider a mixed sensor network made of a large

number of sensor nodes deployed in a large region A as

shown in Fig. 1.

Fig. 1. Mixed sensor network model.

We assume that the region under monitored is a large

rectangular area A = Rx×Ry and a large set S of S = |S|

static sensor nodes are randomly placed in the area A, at

positions xi = (xi, yi), i = 1, · · · , S. In addition, we assume

that a small set M of M = |M| mobile sensor nodes

are available and their position after the k-th time step is

xi(k) = (xi(k), yi(k)), i = 1, · · · ,M , k = 0, 1, · · · . For

notational convenience, we define the set of all sensor nodes

N = S ∪M and in this set the mobile nodes are re-indexed

as m = S + 1, · · · , N , where N = S +M .

We assume that all sensors sense the environment accord-

ing to the probabilistic sensing model [21]. This model is

more realistic compared to the Boolean sensing model as it

can capture the degradation of a sensor’s sensing capability

as the distance between the sensor and measuring point

increases. In this model, a quantity ru is defined in order

to capture the uncertainty in sensor detection. According to

this model, the initial (given one sample) probability that a

sensor s ∈ N detects an event to a distance r is

ps(r) =







1, r ≤ ru
e−β(r−ru)

γ

, ru < r < rd
0, r ≥ rd

(1)

where, ru defines the starting of uncertainty in sensor detec-

tion, rd is the maximum sensing range of the node and the

parameters β and γ are adjusted according to the physical

properties of the sensor and the environment. This model

is more general because it becomes Boolean sensing model

when ru = rd. It is also assumed that all static and mobile

nodes have common communication ranges rc > rd as well

as sensing characteristics and know their location through a

combination of GPS and localization algorithms.

The neighborhood of a sensor s ∈ N is the set of all

sensors nodes that are one hop away, i.e., the nodes that are

located at a distance less than or equal to rc from s. This

set is denoted by

Hrc(s) = {j : ‖xs − xj‖ ≤ rc, j ∈ N , j 6= s} (2)

where ‖ · ‖ denotes the Euclidean norm.

In addition, we consider a set E of E = |E| point events

that can occur in A at positions ei = (xe
i , y

e
i ), i = 1, · · · , E.

These events are uniformly distributed in the areas not

monitored by the static sensor nodes and are temporally

static, i.e. they occurred continuously in time. The case of

temporally dynamic events is also addressed however it is

omitted due to space limitations.

B. Event Detection

As previously implied, all static and mobile nodes sense

the environment according to the probabilistic sensing model

and it is assumed that all sensors’ samples are temporally and

spatially independent. An event is considered as detected

(found) when is occurred at a point that falls within the

sensing range rd of a mobile sensor and the corresponding

occurrence point is sensed with probability close to 1,

given any concurrent measurements of neighboring static and

mobile sensors. In other words, a binary variable ID(ej) is

used to indicate whether an event ej has been detected or

not by a mobile sensor at the current step as follows:

ID(ej) =

{

1 if PD(ej) > τd

0 otherwise
(3)

where PD(ej) is defined below and τd is a pre-defined

threshold close to 1

PD(ej) = 1−
∏

i∈Hrd
(ej)

(1− pi(rij)) (4)

where Hrd(ej) = {i : ‖ej − xi‖ ≤ rd, j ∈ E , i ∈ N} de-

fines all sensors that are located at a distance less than or

equal to rd from the event ej
1.

C. Dynamic Coverage Ck

To study the coverage of such mixed sensor networks

we define a coverage measure called the dynamic coverage.

Unlike static coverage (defined as the instantaneous ratio of

covered area by the sensor network to the area of interest),

dynamic coverage Ck is defined as the ratio of covered area

by the sensor network to the area of interest during a time

interval [0, k]. In other words, it defines the probability that

a temporally static point event can be detected within a time

interval [0, k] by at least one sensor node in the sensor field.

A similar measure of dynamic coverage is also considered in

[5], [11], [14]. The dynamic coverage depends not only on

1Given that ej is unknown, the evaluation of eq.4 requires each mobile
to receive pi(.) of its neighbors and assumes that two events occurred at
least 2rd apart.
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the sensing model, the number of nodes and node placement

strategy, but also depends on the mobility behavior of the

nodes. Hence, proper motion planning is required to exploit

the full advantage of mobile sensors.

To make the concept of dynamic coverage a computa-

tionally measurable objective, the entire sensor field area

A is discretized into an X × Y matrix Gk, k = 0, 1, · · · .

Initially, a zero value is assigned at each cell G0(i, j) = 0,

i = 1, · · · , X , j = 1, · · · , Y and then at k = 1 (first sample)

a value is assigned at each cell G1(i, j) depending on its

distance from the stationary sensors as well as its distance

for the initial position of the mobile sensors. Then, at each

step k every sensor is sampling the environment and mobile

sensors are moving around as well and thus the following

updating rule is used for the Gk matrix,

Gk+1(i, j) =



















1− (1−Gk(i, j))
∏

s

(1− ps(r̄)),

if (i, j) ∈ Dr̄d(x̄s), s ∈ N

Gk(i, j),
otherwise

(5)

where x̄s are the coordinates of sensor s (mobile or static)

in the grid Gk, Dr̄d(x̄s) is the set of grid cells covered by

sensor s ∈ N with sensing range rd, r̄ is the discretized

distance of cell Gk(i, j) from x̄s and ps(r̄) is given by eq.

(1).

The Ck represents the dynamic coverage over a time

interval [0, k] and it is an appropriate quality metric for

applications that require coverage of all locations within

some time interval. Ck also represents the probability of

detection of static events existing in the sensor field within

a time interval [0, k]

Ck =
1

X × Y
×

X
∑

i=1

Y
∑

j=1

Gk (i, j) (6)

Therefore, when temporally static events are considered,

the objective is to maximize the dynamic coverage rate over

a time interval, this objective can be satisfied by finding the

near-optimal paths to be followed by the mobile sensors in

the sensor field in a distributive and collaborative manner.

Its worth pointing out that finding optimal solutions to

any arbitrary problem instance is not possible due to the

complexity of the problem.

D. Mobile Sensor Node Model

Mobile sensor nodes can move in the sensor field and

autonomously plan their trajectories to enhance the dynamic

coverage and minimized the detection latency. The state

of the m-th mobile node at time k is denoted by its

position xm(k) and its heading direction θm(k). Each mobile

node m is capable to move with variable speed υm(k) ∈

[υmin υmax] and make path planning decisions at discrete

time intervals. Note that this model also considers the ma-

neuverability constraints of the mobile platform using some

angle φ which constrains the maximum allowed difference

between θm(k) and θm(k + 1) and allows variable speed

with maximum velocity of υmax.

Finally, we describe the information required by each

mobile in order to run the proposed path planning algorithm.

Each mobile uses a coverage cognitive map, an X×Y matrix

Pm
k , m ∈ M where it keeps the state of the field. Ideally

Pm
k should remain Pm

k = Gk at all times k, since the matrix

Gk represents the accurate global state of the field which

is used for the computation of the dynamic coverage Ck.

Clearly, in a dynamic environment where several sensors

move, fail or more sensors are added as well as due to

limited communication between mobile nodes, it is impos-

sible to guarantee that Pm
k = Gk at all times. However,

we emphasize, that the proposed algorithm, that will run

by a mobile located at some position xm(k), computes its

path based only on local information, i.e., information in the

submatrix of Pm
k that corresponds to the cells Dr̄c(x̄m(k)),

and thus, it is sufficient to have accurate information only

for the Dr̄c(x̄m(k)) submatrix. This is easily attainable since

the required information can be obtained from the one-hop

neighbors.

E. Distributed Path Planning

The path planning method is based on Receding-Horizon

approach where at each step the mobile’s controller evaluates

the cost of moving to a finite set of candidate positions and

moves to the one that minimizes an overall cost.

Fig. 2. Evaluation of the mobile node’s next step.

As shown in Fig. 2, suppose that during the kth step,

the mobile node is at position x(k) and its heading to a

direction θ. The next candidate positions are the νµ points

y11, · · · , yνµ that are distributed on a circular sector with

center x(k), radius ρ and angle θ − φ and θ + φ, where

ν ∈ {2n+ 1, ∀n ∈ Z
+
}. The mobile node evaluates a cost

function J(yij) for all candidate locations (y11, · · · , yνµ) and

moves to the location x(k+1) = yi∗j∗ = x(k)+ j∗ρ

µ
.ei(θ+ϕi∗ )

where i is the imaginary unit and i∗j∗ are the indexes that

minimize J(yij),

i∗j∗ = arg min
1≤i≤ν
1≤j≤µ

{J(yij)} (7)

In this model, θ is the direction that the mobile is heading,

φ is the maximum angle that the mobile can turn in a single

step, ν×µ is the number of candidate positions that are being

evaluated for the next step and ρ is the maximum distance

that the mobile can cover in one time step when the mobile is
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moving with its maximum velocity υmax. This model allows

the mobile node to select an appropriate speed level at each

time step and thus to adapt its speed based on the objectives

that its tries to achieve. Assuming that the time ts between

two consecutive time steps k and k + 1 is constant, we get

ts = ρ

υmax

= jρ

µυi
. Hence, these discretized speed levels are

defined by

υi =
j

µ
υmax, j = 1, · · · , µ (8)

The objective function J(yij) that each mobile is trying

to minimize is of the form

J(yij) =
∑

o∈O

woJo(yij) (9)

where O is a set of indexes such that the functions Jo,

o ∈ O are normalized cost functions with 0 ≤ Jo ≤ 1
and are defined to achieve certain objectives. wo are non-

negative constant weights that are used to trade off these

objectives. For the purposes of this section, O = {t, s, c, a, b}
but other functions can also be included (e.g. a cost function

that depend on time or the residual energy of mobile nodes).

In order to improve the area coverage, the mobiles should

move towards large uncovered regions and on their path,

they should try (to the extend possible) to avoid areas that

are covered by static sensors or have been covered by other

mobile nodes. For the purposes of this paper the following

normalized functions have been used: Jt(·) which penalizes

positions that are away from large coverage holes, Js(·) and

Jc(·) which penalize positions that are close to regions been

covered by other sensors (stationary or mobile), Ja(·) which

enable mobiles to avoid obstacles and Jb(·) which prevents

mobiles moving outside the region under monitored. Next,

we present the formulas of these functions.

a) Target Cost Function: At each step k, the mobile

node m uses the information stored in its Pm
k matrix to

search for the center of the biggest coverage hole (uncovered

region) at a radius rz from its current location. This can be

done efficiently using the zoom algorithm [12]. The zoom

algorithm divides the submatrix of Pm
k that corresponds to

the cells Drz (x̄m(k)) in a 2D divide-and-conquer manner

and outputs the hole center position. The center of the hole

becomes the current target destination point xt of the mobile.

The cost Jt(y) is a function that pulls the mobile towards its

target and is a function of the distance between the mobile

and the target position. This cost function is given by

Jt(y) =
‖y − xt‖

rz
(10)

In this function, rz is the maximum distance between the

mobile node and its target and is used for normalization.

The radius rz is an important parameter of the path planning

algorithm and previous results [22] indicate that is more

beneficial (achieves better area coverage and event detection

time) if the dynamic target is determined more closer (“lo-

cally”) to the mobile as opposed to more “globally”. Thus

rz range must be fairly small compared to the sensor field

area. Note that since rz ≤ rc − rd in order to have accurate

information, a smaller rz is advantageous as it implies that

less information (i.e. less computation and communication)

is needed for the coverage hole estimation.

b) Neighboring Sensor Cost Function: The objective of

this function is to push the mobile away from areas covered

by other sensors. The cost function Js(y) used involves a

repulsion force that pushes the mobile away from its closest

neighbor. The form of this function is given by

Js(y) = max
j∈Hrc (m)

{

exp

(

−

‖y − xj‖
2

r2s

)}

(11)

where Hrc(m) is the set of all nodes in the communication

range rc of the mobile m. The detection range rd quantifies

the size of the region around the mobile m to be repelled by

its neighbors.

c) Coverage Cost Function: The cost function Jc(y),
similarly to Js, is designed to push the mobile away from

areas that have been covered by other sensors (stationary

or mobile) or by itself using the relevant information from

the cognitive map of the mobile node. This function takes a

larger value if the candidate position is adequately covered by

other sensors and a small value otherwise. This cost function

is given by

Jc(y) =
1

πr2d

∑

{i,j}∈Dr̄d
(ȳ)

Pk(i, j) (12)

where Dr̄d is the set of cells that exist in a discretized disk

of the mobile’s Pk matrix, centered at the position ȳ with

radius of r̄d.

d) Obstacle Avoidance Cost Function: This function

enable the robots to avoid hitting obstacles that exist in

the environment. The obstacle avoidance cost function Ja
is similar to Js and its form is given by

Ja(y) = exp

(

−

(

ro − ‖y − x(k)‖
)10

r10d

)

(13)

where rd is the detection range and ro indicates the distance

of the obstacle’s boundary from the mobile’s current position

x(k) and its provided by the mobile’s on board range-finding

sensors such as low cost ultrasonic sensors or infrared sen-

sors. The information provided by range-finding sensors can

be combined with the model presented in Fig. 2 to associate

each candidate location yij with a cost. For instance, the

geometry of detectors can be combined with each candidate

direction ϕi, i = 1, · · · , ν to provide the distance to obstacles

associated with the candidate direction.

e) Boundaries Cost Function: For completeness, note

that another cost function is used that prevents mobiles from

stepping outside the field along with projection which means

that mobile sensors return to the interior of the field whenever

they reach to boundaries in a manner similar to that of a

light wave reflecting on a mirror. This boundary cost function

Jb(y) penalizes all candidate positions y that are not included

in the field area A and is given by

Jb(y) =

{

1 if y /∈ A

0 otherwise
(14)
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F. Distributed Asynchronous Collaboration Scheme

Since each mobile determines its path autonomously, when

two or more mobiles come close to each other it is very likely

that the information they will use to estimate the next target

position will be the same and as a result they will all estimate

the same target location. To avoid this problem we utilize a

collaboration protocol that enables mobile nodes to exchange

some information in order to avoid moving towards to the

same point and search different areas.

The collaboration protocol developed is as follows: If at

step k, the mobile nodes come into communication range rc
when they were out of range in step k−1, they exchange their

entire maps Pm
k only if their coverage difference exceeds a

predefined threshold τC since the last time communicated 2.

If they are in rc at time k− 1 then they only exchange their

positions xm(k) and dynamic target coordinates xm
t (k). Note

that the Pm
k is exchanged only in an event driven way.

After a mobile node i has exchanged collaboration mes-

sages with its neighboring mobiles it has all the necessary

information to execute the collaboration protocol. Thus at

first, it merges its cognitive map P i
k with the cognitive maps

P j

k , j 6= i received from its “new” neighbors, so that it does

not explore areas already explored by other mobile nodes.

Merging policy is based on a cell value maximization rule.

Afterwards, the mobile node i utilizes the current locations

xj(k) and dynamic target coordinates x
j
t (k) received by

its neighboring mobiles j 6= i (as well as the locations

received by its neighboring stationary nodes) in order to

update its P i
k cognitive map and to avoid going towards the

same point. Thus, once the mobile i has received all target

points from its neighbors, it forms the matrix Drz (x̄i(k))
(which is a copy of the set of P i

k cells that corresponds

to the distance rz from the current position of mobile i)
and updates the Drz (x̄i(k)) matrix by assuming that these

targets points constituted covered areas. Finally, it executes

the zoom algorithm [12] where the input is the Drz (x̄i(k))
matrix and the output is the dynamic target point xit(k)
of the mobile node i which is definitely different that the

target points of its neighboring mobiles. As mobile nodes

remain in communication range there is no need to exchange

their cognitive maps since their maps are updated accurately

using the positions of neighbors. It should be pointed out

that proposed scheme is distributed (no need for a central

controller) and utilizes only local information available in

the neighborhood of the mobile node.

III. SIMULATION RESULTS

In the first simulation, we investigate the parameters of the

adaptive speed policy with respect to the average dynamic

coverage and average number of static events detected using

monte carlo simulations. We assumed 100 sensor fields with

300 randomly distributed stationary sensors and in each field

10 static events not initially detected exist. The objective is

2Each mobile must keep in its memory a communication matrix where it
tracks with which mobiles was in communication during the previous step
as well as what was its coverage value since the last time it communicates
with another mobile.

to investigate the adaptive versus the constant speed policy.

The key parameter here is µ, for µ = 1 mobiles are moving

with constant maximum speed and as µ increases more speed

levels and thus speed adaptivity is allowed, however as µ
increases computation overhead also increases. These exper-

iments refer to a square sensor field of area A = 40000m2

and the sensors parameters are set to rd = 6m with ru = 4m,

β = γ = 1. The radius rz where the dynamic target is found

is set to rz = 19m and rc = rz + rd = 25m. The weights

are set to wt = 0.5, ws = 0.2, wc = 0.3, wa = wb = 1
and thresholds for event detection and exchange of cognitive

maps are set to τd = 0.999 and τC = 5% respectively. The

mobile maneuverability parameters are set to ρ = 5m and

φ = 40◦ while for every decision νµ candidate next positions

are considered with ν = 5. Fig. 3 depicts the results for

µ = 1, 2, 4.

As shown in Fig. 3 the performance in terms of average

dynamic coverage as well as the number of events detected

increases but the total distance travelled by mobile nodes

decreases!. This is an advantageous and desirable behavior

and can be justified because using an adaptive speed policy

(i.e. modifying the speed of the mobile at each step) enable

mobiles to make more precise movements, which decreases

the distance the mobiles moved (i.e. the energy needed for

mobility) and simultaneously increases the dynamic coverage

performance over time. In other words, if a mobile considers

more candidate positions including positions that fall very

near to it, (meaning going slower or make more precise

navigation) it enables the mobile to go slower when needed

but still have the option to go fast and thus decide its next

position more accurately.
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Fig. 3. The average coverage and average number of detected static events
accomplished by M = 5 mobile nodes after 200 moving steps for the
adaptive and constant maximum speed policies.

Finally, the last simulation evaluates the robustness of the

proposed Distributed Collaborative coverage path planning

Algorithm (DCA) with respect to the failures of mobile

sensors. The lifetime of mobile sensors is modeled as an

exponential distribution with failure rate λ = 1/T , where T
denotes the simulation time. To illustrate the effectiveness of

the proposed DCA, we have implemented another Central-

ized Partitioning coverage path planning Algorithm (CPA).

In CPA is assumed that a central controller partitions the area

under monitored into m equal partitions, where m denotes

the number of mobile sensors, and assigns each mobile to a

different partition. Fig. 4 illustrates the paths followed using
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the DCA and CPA on the same sparse sensor field with 500

stationary sensors and 4 obstacles. The other parameters used

for this simulation are the same as in the previous simulation.

Note that in this scenario three mobile sensors fail before the

end of the simulation time T = 300 time steps.
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(b) Coverage path planning using the CPA.

Fig. 4. Paths followed using DCA and CPA under mobile sensor failures
in a sparse sensor field with obstacles.

The two approaches are evaluated/compared using exten-

sive monte carlo simulations for the case when mobiles

failed according to the exponential distribution with failure

rate λ = 1/300. We assumed 100 sensor fields with 500

randomly distributed stationary sensors and for each field

identical initial positions and failures of mobile sensors

are considered when simulating each algorithm. Results are

shown in Fig. 5. As expected DCA outperforms CPA in

both coverage and distance travelled performance due to its

adaptive and distributed behavior. Therefore the proposed

DCA is robust and adaptive to sensor node failures.
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Fig. 5. DCA vs CPA under mobile sensor failures: Average coverage
accomplished by M = 5 mobile nodes after 300 moving steps.

IV. CONCLUSION

This paper presents an efficient adaptive-distributed-

collaborative framework for mixed WSNs where autonomous

mobile sensors navigate through a sparse stationary WSN

searching for events and improving area coverage. An adap-

tive speed policy have been proposed to improve the perfor-

mance and the energy consumption of mobile sensors and

the robustness of the proposed approach has been evaluated

under mobile sensor failures.
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Abstract— The problem of door opening is fundamental
for household robotic applications. Domestic environments are
generally less structured than industrial environments and thus
several types of uncertainties associated with the dynamics and
kinematics of a door must be dealt with to achieve successful
opening. This paper proposes a method to open doors without
prior knowledge of the kinematics. The proposed method can
be implemented on a velocity-controlled manipulator with force
sensing capabilities at the end-effector. The velocity reference
is designed by using feedback of force measurements while
constraint and motion directions are updated online based
on adaptive estimates of the position of the door hinge. The
online estimator is designed to identify the unknown directions.
The proposed scheme has theoretically guaranteed performance
which is further demonstrated in experiments on a real robot.
Experimental results also show the robustness of the proposed
method under disturbances introduced by the motion of the
mobile platform.

I. INTRODUCTION

Doors or drawers can be considered typical components in
a domestic environment. Hence, a household robot should be
able to open doors in a wide range of household applications.
A typical example of domestic manipulation may be the task
of retrieving a glass from a cupboard. In this case, the task
also involves the prerequisite task of opening the door of the
cupboard so that the primary task of picking up the glass can
be performed. Moreover, in order to bring the glass to its final
destination, the robot may have to negotiate doors between
rooms or hallways. Furthermore, domestic environments
include several types of uncertainty that disqualifies the use
of motion control with preplanned trajectories typically used
on stiff industrial robots, making the door opening task more
challenging. Thus, the motion plans have to be recomputed
online in reaction to encountered measurement errors.

Typical sources of uncertainty in the door-opening prob-
lem are the location of the hinge in terms of kinematics,
and the force model of the dynamic motion of the door. If
we also consider a mobile robot, then extra difficulties arise
from the disturbances caused by motion of the platform.

Pioneering work on the door opening problem include [1]
and [2]. In [1], experiments on door opening with an
autonomous mobile manipulator were performed under the
assumption of a known door model, using the combined
motion of the manipulator and the mobile platform, while
in [2], velocity-based estimation of the constraints describing
the kinematics of the motion for the door opening problem

is proposed. Recent works of [3] and [4] has been inspired
by [2]; however, they suffer from ill-defined normalization
when the velocity is small and estimation lags. Furthermore,
there exist several position-based estimation techniques [5]–
[8]; optimization algorithms that uses the end-effector po-
sition are used in parallel with controllers that provide the
system with the proper compliance in order to deal with
inaccurate trajectory planning. On the other hand, off-line
methods using prior phases have been also proposed: slowly
pulling and pushing in a prior phase [9], probabilistic meth-
ods based on a set of motion observations of the objects [10]
or based on the use of particle filters and extended Kalman
filters for an a priori defined detailed model of the door [11].
Another part of the literature on the door opening problem
exploits advanced hardware capabilities to accomplish the
manipulation task: combination of tactile-sensor and force-
torque sensor [12], clutches that disengage selected robot
motors from the corresponding actuating joints for passive
joint’s rotation [13], exploitation of the compliance of the
DLR lightweight robot II [14] and use of the humanoid robot
HRP-2 exerting impulsive force on a swinging door [15].

In this paper, we propose a controller which is proved
to achieve stable force regulation as well as learning the
constraint direction, and thus is able to continously generate
online motion plans for smooth door opening in case of un-
certainty. The proposed method can be implemented on any
velocity controlled manipulator — with force measurements
at the end-effector or wrist — and differs from the existing
work by simultaneously providing on-line performance while
explicitly including the uncertain estimates in the controller.

II. SYSTEM AND PROBLEM DESCRIPTION

A. Notation and Preliminaries

Bold roman small letters denote vectors while bold roman
capital letters denote matrices. The generalized position of
a moving frame {i} with respect to a inertial frame {B}
(typically located at the robots base) is described by a
position vector pi ∈ Rm and a rotation matrix Ri ∈ SO(m)
where m = 2 for the planar case. We also consider the
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following normalization and orthogonalization operators:

z =
z

‖z‖
(1)

s(z) =

[
0 −1
1 0

]
z (2)

with z being any non-trivial two-dimensional vector. Note
that in case of z = z(t) the derivative of z is calculated as:

ż = ‖z‖−1s(z)s(z)>ż. (3)

Furthermore, we denote with I(z) the integral of some scalar
function of time z(t) ∈ R over the time variable t, i.e:

I(z) =

∫ t

0

z(τ)dτ (4)

B. Kinematic model of robot door opening

We consider the case where the robot’s end-effector has
achieved a fixed grasp of the handle of a kinematic mecha-
nism e.g. a door in a domestic environment. The term fixed
grasp denotes that there is no relative translational velocity
between the handle and the end-effector but we place no
constraints on the relative rotation of the end-effector around
the handle. We consider also that the motion of the handle is
inherently planar which implies a planar problem definition.

Let {e} and {o} be the end-effector and the door frame
respectively (Fig. 1); the door frame {o} is attached at the
hinge which in our case is the center of door-mechanism
rotation. The radial direction vector r is defined as the
relative position of the aforementioned frames:

r , po − pe (5)

By expressing r with respect to the door frame and differ-
entiating the resultant equation we get:

Ṙo
or + Ro

oṙ = ṗo − ṗe (6)

The substitutions oṙ = ṗo = 0 and Ṙo = ω

[
0 −1
1 0

]
Ro,

with ω being the rotational velocity of the door, give us:

ṗe = −s(r)ω (7)

which describes the first-order differential kinematics of the
door opening problem in case of a revolute hinge. Notice
that the end-effector velocity along the radial direction of
the motion is zero, i.e:

r>ṗe = 0 (8)

The latter can be regarded as the constraint on the robot
end-effector velocity.

C. Robot kinematic model

In case of velocity controlled manipulators, the robot joint
velocity is controlled directly by the reference velocity vref.
In particular, the reference velocity vref can be considered as
a kinematic controller which is mapped to the joint space in
order to be applied at the joint velocity level as follows:

q̇ = J+(q)vref (9)

Fig. 1: Kinematics of the door opening

with q, q̇ ∈ Rn being the joint positions and velocities
and J(q)+ = J(q)>

[
J(q)J(q)>

]−1
being the pseudo-

inverse of the manipulator Jacobian J(q) ∈ R2×n which
relates the joint velocities q̇ to the end-effector velocities ṗe;
without loss of generality we consider only the translational
end-effector velocity ṗe ∈ R2 and the associated Jacobian.
If we consider the typical Euler-Lagrange robot dynamic
model, the velocity error at the joint level drive the torque
(current) controller u(t). If we assume a high frequency
current control loop with external forces’ compensators and
weak inertial dynamics, the kinematic model is valid.

D. Control Objective

The objective is to control the motion of the robot to
achieve a smooth interaction with an external kinematic
mechanism such as a door. In applications which take
place in a dynamic unstructured environments such as a
domestic environment, it is difficult to accurately identify the
position of the hinges and the associated dynamics. Hence,
it is difficult to design a priori the desired velocity within
the constraints imposed by the kinematic mechanism. The
execution of a trajectory which is inconsistent with system
constraints gives rise to high interaction forces along the
constraint direction which may be harmful for both the
manipulated mechanism and the robot.

Let frd and vd be the desired radial force and desired
tangent velocity magnitudes respectively. If we define the
force along the radial direction as fr = r>f with f ∈ R2

being the total interaction force, the control objective can be
formulated as follows: fr → frd and ṗe → s(r)vd. These
objectives have to be achieved without knowing accurately
the r direction which subsequently implies that there are
uncertainties in the control variables fr and s(r)vd. From a
high level perspective, we consider that the door opening task
is accomplished when the observed end-effector trajectory,
which coincides with the handle trajectory, enable the robot
to perform the subsequent task which can be for example “get
an object” or “pass through the door”. Thus the command
to halt the door opening procedure is given externally based
on the observations of the rotation angle ϑ.
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III. CONTROL DESIGN

A. Incorporating Force Feedback in the Velocity Reference

Let us first define an estimated radial direction r̂(t) based
on appropriately designed adaptive estimates of the center of
rotation p̂o(t):

r̂(t) = p̂o(t)− pe (10)

For notation convenience we will drop out the argument of
t from r̂(t) and p̂o(t). We will use the estimated radial
direction (10) considering that ‖r̂(t)‖ 6= 0, ∀t in order to
introduce a reference velocity vector vref for controlling the
end-effector velocity:

vref = s(r̂)vd − αr̂vf (11)

with α being a positive control gain acting on the force feed-
back term vf which has been incorporated in the reference
velocity.

We can now introduce the velocity error:

ṽ , v − vref (12)

where v , ṗe can be decomposed along r̂ and s(r̂)
and subsequently expressed with respect to the parameter
estimation error p̃o = r̃ = po− p̂o by adding −‖r̂‖−1r̂r>v
as follows:

v = s(r̂)s(r̂)>v − ‖r̂‖−1r̂p̃>o v (13)

Substituting (13) and (11) in (12) we can obtain the following
decomposition of the velocity error along the estimated radial
direction r̂ and the estimated direction of motion s(r̂):

ṽ = R̂o

[
−‖r̂‖−1p̃>o v + αvf

s(r̂)>v − vd

]
(14)

where R̂o ,
[
r̂ s(r̂)

]
.

In the next step, we are going to design the force feed-
back vf employed in the reference velocity vref. The force
feedback term vf is derived from the magnitude of the
measured force components projected along the estimated
radial direction:

f̂r = r̂>f (15)

the corresponding force error:

∆f̂r = f̂r − frd (16)

as well as the corresponding force error integral I(∆f̂r). In
particular, for velocity controlled robotic manipulators, we
propose a PI control loop of the estimated radial force error
∆f̂r :

vf = ∆f̂r + βI(∆f̂r) (17)

with β being a positive control gain. By projecting ṽ =
0 along r we can calculate f̂r as a Lagrange multiplier
associated with the constraint (6) for the system (9):

f̂r = frd − βI(∆f̂r) +
vdr
>s(r̂)

αr>r̂
. (18)

Equation (18) is well defined for r>r̂(t) > 0. Equation (18)
is consistent to (15) in case of rigid contacts and fixed grasps.

Remark 1: For torque controlled robotic manipulators, the
derivative of reference velocity also known as reference
acceleration is required in the implementation. In order to
avoid the differentiation of the force measurements in case
of torque controlled manipulators, the force feedback part
of the reference velocity should be designed using only the
integral of the estimated radial force error.

B. Update Law Design

The update law for the vector p̂o is designed via a
passivity-based approach, by defining the output of the
system as follows:

yf = αf∆f̂r + αII(∆f̂r) (19)

with αf and αI being positive constants. Taking the inner
product of ṽ (14) with r̂yf (19) we obtain:

yf r̂
>ṽ = yf (−‖r̂‖−1p̃>o v + vf )

= −‖r̂‖−1yfv>p̃o + c1∆f̂2r (20)

+ c2I(∆f̂r)
2 + c3

d

dt

[
I(∆f̂r)

2
]

where:

c1 = ααf , c2 = ααIβ, c3 =
α(αfβ + αI)

2
(21)

Next, we design the update law ˙̂po , − ˙̃po as follows:

˙̂po = P{γ‖r̂‖−1yfv} (22)

Notice that P is an appropriately designed projection oper-
ator [16] with respect to a convex set of the estimates p̂o
around po (Fig. 2) in which the following properties hold: i)
‖r̂‖ 6= 0, ∀t, in order to enable the implementation of the
reference velocity and calculate estimated radial force and
ii) r>r̂ > 0; which is required for the system’s stability. It

Fig. 2: Convex set S for the projection operator P

is clear that the update law (22) gives rise to the potential
owing to estimation error i.e. 1

2γ p̃
>
o p̃o and allow us to use

the following function V
(
I(∆f̂r), p̃o

)
in order to prove

Theorem 1 for velocity controlled manipulators. In particular
V
(
I(∆f̂r), p̃o

)
is given by:

V
(
I(∆f̂r), p̃o

)
= c3I(∆f̂r)

2 +
1

2γ
p̃>o p̃o (23)

and is positive-definite with respect to I(∆f̂r), p̃o and
Theorem 1 is stated below:
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Theorem 1: The kinematic controller vref (11) with the
update law (22) applied to the system (9) achieves the
following objectives: r̂ → r, v → s(r)vd, I(∆fr)→ 0 and
fr → frd, which are equivalent with the control objective of
smooth door opening stated in Section II-D.
Proof: Substituting (11) in (9) and multiplying by J(q),
implies ṽ = 0. Differentiating V

(
I(∆f̂r), p̃o

)
with respect

to time and substituting ṽ = 0 and (22) we get: V̇ =
−c1∆f̂2r − c2I(∆f̂r)

2; note that V̇ has extra negative terms
when the estimates reach the bound of the convex set and the
projection operator applies and thus the stability properties of
the system are not affected. Hence, I(∆f̂r), p̃o are bounded
and we can prove the boundedness of the following variables:
(a) f̂r is bounded, given the use of projection operator
in (18), (b) vref is bounded, (c) q̇ is bounded, given the
assumption of a non-singular manipulator in (9), (d) ˙̂po is
bounded, given (22) and the boundedness of v.

The boundedness of the aforementioned variables implies
that ˙̂

fr and subsequently V̈ = −2∆f̂r[c1
˙̂
fr + c2I(∆f̂r)] are

bounded and thus Barbalat’s Lemma implies V̇ → 0 and
in turn I(∆f̂r), ∆f̂r → 0. Substituting the convergence
results in (9) and (18) we get v → s(r̂)vd and r̂>s(r)→ 0
for limt→∞ |vd| 6= 0 (or for a vd satisfying the persistent
excitation condition) respectively; the latter implies r̂ → r.
Since the estimated direction of the constraint is identified
we get: v → s(r)vd, I(∆fr)→ 0 and fr → frd. �

C. Summary and Discussion

The proposed method is based on a reference velocity (11)
which is decomposed to a feedforward velocity on the esti-
mated direction of motion and a PI force control loop on the
estimated constrained direction. The estimated direction is
obtained on-line using the update law (22) and the definition
of the radial estimate (10). The use of (22) and (10) within a
typical velocity reference like (11) enables the proof of the
overall scheme stability as well as the proof that the estimates
converge to the true values, driving the velocity and radial
force to their desired values. Note that the proposed control
scheme can easily be implemented on a common robotic
setup with a velocity-controlled robotic manipulator with a
force/torque sensor in the end-effector frame.

It is also clear that the proposed method is inherently
on-line and explicitly includes the uncertain estimates in
the controller, as opposed to the state of the art for door
opening (as described in Section I), which assumes that the
estimate obtained in each step is approximately equal to the
actual value. The proposed method can be also combined
with off-line door kinematic estimation; in this case the
off-line estimates can be used as the initial estimates of
the estimator (22). However, our scheme is proven to work
satisfactorily even in the case of large estimation errors,
where off-line methods fail. Last but not least, the proposed
method can be also be applied to other types of robot
manipulation under kinematic uncertainties. We have chosen
here the door opening problem since it is very challenging,
but can be described in terms of concrete motion constraints.

IV. EXPERIMENTAL EVALUATION

The performance was evaluated on a real robot system.
The arm used is constructed from Schunk rotary modules,
that can be sent velocity commands over a CAN bus. The
modules incorporate an internal PID controller that keeps the
set velocity, and return angle measurements. In this setup,
the modules are sent updated velocity commands at 400 Hz.
Angle measurements are read at the same frequency. The
arm has an ATI Mini45 6 DoF force/torque sensor mounted
at the wrist. The forces are also read at 400 Hz in this
experiment. The force readings display white measurement
noise with a magnitude of approximately 0.2 N, apart from
any process noise that may be present in the mechanical
system. In the experiment, we actuate the second and fifth
joints, and start the experiment with the end-effector firmly
grasping the handle of a cupboard door. The cupboard door
is a 60 cm width IKEA kitchen cupboard, with multiple-link
hinges, so that the centre of rotation moves slightly (<1 cm)
as a function of door angle. The handle of the door has been
extended an additional 5 cm to accomodate the width of the
fingers on the parallel gripper.

We examine two scenarios. The first scenario assumes a
large error in the initial estimate (initial error of 50◦), but
a stationary platform, while the second scenario assumes a
smaller initial error (initial error of 5◦) but with a moving
base. The desired velocity value vd=0.05 m/s for both sce-
narios. The controller gains are set to af = 0.1, aI = 0.05,
α = 0.001, β = 0.1, γ = 0.5. These gains have not been
tuned specifically for the robot configuration or problem
parameters, in order to show the generality of the approach.
Fig. 3 shows the robot performing the task in the first case,
and Fig. 4 shows the robot performing the task in the second
case. Note that the base motion allows the cupboard to be
opened to a wider angle. The base motion was 0.3 m along
a straight line, driven by a human operator at approximately
0.04 m/s. The base motion was not modelled or included in
the controller, but treated as an external disturbance.

The experimental results are shown in Figs. 5 and 6 for
stationary and moving base respectively. In the stationary
case, both force error and estimation error converge to zero
in approximately 4 s. In the moving base scenario, we see
larger force errors and slower convergence. This is to be
expected, as the base motion continuously injects new errors
into the system.

V. CONCLUSIONS

This paper proposes a method for manipulation with un-
certain kinematic constraints. It is inherently on-line and real-
time, and convergence and stability is analytically provable.
The method can be used with any velocity controllable
manipulator with force measurements in the end-effector
frame. In this paper, the method has been applied to the
task of opening a door with unknown location of the
hinges, while limiting the interaction forces. In particular,
a velocity reference is designed using force and position
measurements to deal with the door opening problem in the
presence of incomplete knowledge of the door model. In
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Fig. 3: The robot performing the door opening experiment. vd = 0.05 m/s. The images are taken at t = 0 s, t = 1.5 s, t = 3.6 s, and
t = 5.7 s, respectively.

Fig. 4: The robot performing the door opening experiment, with moving base. vd = 0.05 m/s. The images are taken at t = 0 s, t = 2.2 s,
t = 4.8 s, and t = 9.2 s, respectively.
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Fig. 5: Radial force (upper plot) and estimation error (lower plot)
responses - robot experiment, stationary base, high error in
initial estimate p̂o1(0)

the velocity reference, the constraint direction is explicitly
considered uncertain by including online estimates based on
the adaptation of the hinge’s location. Convergence results
are theoretically proved. An experiment on a real robot show
that the estimates converge to the actual values even for large
initial errors in the estimates as well as that the method can
achieve smooth door opening even in case of disturbances
due to the motion of the robotic mobile platform. Future
work includes applying the proposed method to a wider
range of domestic manipulation tasks with uncertainties in
the kinematic constraints.
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Real-Time Robot Trajectory Generation with Python*

Morten Lind1, Lars Tingelstad1 and Johannes Schrimpf2

Abstract— Design and performance measurements of a
framework for external real-time trajectory generation for
industrial robots is presented. The framework is implemented
entirely in Python. It serves as a proof of concept for performing
real-time trajectory generation in Python, from a PC with
connection to the motion controller in an industrial robot
controller. Robotic applications requiring advanced, custom
trajectory generation, and a high level of integration with
sensors and other external systems, may benefit from the
efficiency of Python in terms of reduced development time,
lower code complexity, and a large amount of accessible
software technologies.

The presented framework, dubbed PyMoCo, supplies a set
of simple trajectory generators, which are comparable to those
found in contemporary industrial robot controllers. Designing
and implementing new trajectory generators and integrating or
extending the included trajectory generators is central to the
design of PyMoCo. Laboratory applications involving real-time
sensor- and vision-based robot control has demonstrated the
usability of PyMoCo as a motion control framework and Python
as a robotics application platform. For robotics applications
with a control frequency not exceeding a couple of hundred
Hz, computation deadlines no shorter than some couples of
milliseconds and jitter tolerance at the order of a millisecond,
PyMoCo may be considered a feasible and flexible framework
for testing and prototype development.

I. INTRODUCTION

Robotic tasks of limited complexity such as simple posi-

tioning tasks, trajectory following or pick-and-place appli-

cations in well structured environments, are straightforward

to develop and integrate in the application platform of

the native robot controller using current commercial robot

control software (de Schutter, et al. (2007) [1]).

If robots communicate or interact with other robots or

systems, the implementation is most often based on vendor-

specific proprietary protocols and with limited performance

specifications that preclude online sensor-based control (De-

cré (2010) [2]). However, there is a strong market pull

for more flexible and cost effective robotic systems which

are able to integrate a multitude of sensors and operate

in unstructured environments. An example of this is the

increased use of industrial robots in small and medium-

sized manufacturing enterprises, often characterized by a

combination of low-volume, high variety, and custom-made

*The work presented has been financially supported by the The Research
Council of Norway through the research programmes “SFI Norman”,
“BIA Robust, industriell sømautomatisering” and “KMB Next Generation
Robotics”.

1Department of Production and Quality Engineering, Norwegian Univer-
sity of Science and Technology, Trondheim, Norway

2Department of Engineering Cybernetics, Norwegian University of Sci-
ence and Technology, Trondheim, Norway

e-addresses: {morten.lind, lars.tingelstad,
johannes.schrimpf} at ntnu.no

goods (EURON (2005) [3]). In order to meet these requests

from the industry, new methods for programming and system

integration are needed.

Many research laboratories therefore attempt to circum-

vent the application platform of the native robot controller,

which either precludes real-time interaction or does not

offer an appropriate set of technologies for solving the

pertinent problem, in order to directly interface the motion

control level. The motion control level is described as the

entity providing a real-time interface for addressing the joint

configuration space of the robot arm at an intermediate-level

frequency; in the range from 100Hz to 1 kHz. The ability to

address the motion control level from an external application

platform may thus give full control of choosing hardware

peripherals, programming software and control algorithms

(Decré (2011) [2]). The motion control level is often referred

to as low-level control in literature.

A. Related Work

Applications that utilize low-level interfaces, to the mo-

tion control level, are usually implemented with compiled,

intermediate-level languages, such as C or C++, and de-

ployed on some real-time operating system (OS) platform,

such as VxWorks, QNX, OS-9 and RTAI+Linux. The ob-

vious reasons for these choices are among requirements to

hard real-time performance; efficiency of computation with

short cycle times; and latency tolerance on the time scale of

microseconds.

Dallefrate et al. (2005) [4] used RTAI+Linux to control the

Mitsubishi PA10 robot at the motion control level in 1 kHz
over Arcnet.

Kubus et al. (2010) [5] modified Stäubli controllers and

gained external joint level position control rates of 10 kHz
and 250Hz from a QNX system on a standard PC.

Buys et al. (2011) [6] present a teleoperation setup us-

ing two KUKA Light-Weight Robots (LWR) coupled to

a Willow Garage Personal Robot (PR2). The two KUKA

LWR robots are controlled over the KUKA Fast Research

Interface (FRI) (Schreiber et al. (2010) [7]) for the KUKA

KRC2LR industrial controller from an external control unit

running RTAI+Linux. The communication is based on the

UDP protocol and has a configurable communication rate

of up to 1 kHz. The application was integrated using the

two component based robotic frameworks OROCOS (Open

Robot Control Software) (Bruyninckx (2001) [8] and Bruyn-

inckx et al. (2003) [9]) and ROS (Robot Operating System)

(Quigley et al. (2009) [10]).

A contemporary overview of the directly available low-

level accessibility in some industrial robot controllers can be
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found in Kröger and Wahl (2010) [11].

B. Motivation and Goals

The work underlying this paper is motivated by the desire

for making quick prototype development of real-time, sensor-

based robotics applications in a laboratory setting with

industrial robots. Our main application domain is industrial

manufacturing automation, and all laboratory projects in-

volve industrial robots for various types of tasks, ranging

from standard offline programmed robot control to sensor-

based real-time trajectory generation.

The presented work started out as a simple need for ex-

perimenting with motion control interfacing, and developed

into the robot control framework we call PyMoCo. When

developing real-time robotic applications, there are many

demanding issues involved. We aim at addressing two of

these:

• Maintenance and knowledge of specialized real-time

operating systems and platforms (hardware and soft-

ware).

• Development of C/C++ applications on real-time en-

abled software frameworks or platforms.

The goals of the presented work were to establish a

sufficiently stable real-time framework which is:

• based on a stock GNU/Linux kernel and a freely avail-

able operating system,

• and using a high-level scripted programming language

in pure user-mode.

Obtaining these two goals may have driven our develop-

ment away from supplying directly usable industrial solu-

tions. On the other hand it has been the enabling factor for

having many researchers as well as projects making progress

in advanced sensor-based robot control applications.

The specific choices of using stock Real-Time Linux1 ker-

nels with the Debian/Ubuntu operating systems and Python

as the programming language were well-considered in terms

of previous experiences and expertise.

As will be demonstrated later, see Section III, there is not

much effect on the performance from using the Real-Time

Linux kernel compared to using a standard Linux kernel.

The major concern towards real-time performance regards

the Python run-time efficiency and the implementation of

PyMoCo. While there exist a possibility, however remote,

that Real-Time Linux may some day guarantee an upper

bound to latency, the Python run-time system in its current

form, and possibly far into the future, does not possess hard

real-time quality.

The efficiency of using Python as a development lan-

guage, and even as an end-target platform has been well

known for some time (van Rossum (1998) [12]). Further,

the general scientific computational performance of Python

is well document by many papers and projects; see e.g. the

comprehensive paper by Cai et al. (2005) [13].

It is the purpose of this paper to give an overview of Py-

MoCo at the design and architectural level and to convey an

1https://rt.wiki.kernel.org/

impression of its level of feasibility as a software technology

for real-time trajectory generation in prototype development

of sensor-based applications of industrial robots.

C. Paper Outline

The remainder of this paper is outlined as follows. An

overview of PyMoCo is presented in Section II, performance

test setup and results are presented and discussed in Sec-

tion III, and general discussion and mention of further work

is presented in Section IV.

II. PYMOCO OVERVIEW

PyMoCo is a free and open source2 software framework

implemented entirely in Python, using the efficient NumPy3

library for numerical computations. This section gives an

overview of the architectural structure of PyMoCo.

The development of PyMoCo has been proceeding over

the past five years and by now amount to some 4500

lines of Python source code4. It includes back-ends to two

different robot types: A software-modified Universal Robots5

controller and hardware-modified Nachi Robotics AX10 and

AX20 controllers.

A. Applications

Though PyMoCo is a work in progress it has played a

central role in many manufacturing automation prototype

projects at our research laboratories.

The dual robot, real-time sensor-based sewing cell de-

scribed by Schrimpf et al. (2012) [14] has a setup that uses

PyMoCo trajectory generators.

Lind (2012) [15] used PyMoCo in the development of a

joint offset calibration method for industrial robots.

Tingelstad et al. (2012) [16] used PyMoco for a tight

tolerance compliant assembly task of critical aero engine

components.

Schrimpf et al. (2011) [17] used PyMoCo for a real-time

sensor-based control system with multiple sensors in a line-

following application.

Lind and Skavhaug (2011) [18] used PyMoCo’s

ToolLinearController trajectory generator intensively for a

real-time emulated production system setup involving several

robots.

B. Architecture and Design

The PyMoCo run-time provides three core interfaces to the

trajectory generation and application level systems. These are

described in the following.

1) RobotDefinition Interface: is a placeholder for all static

information about the robot in use. It provides such infor-

mation as static link transforms; joint transform parameters;

translators between different joint spaces: actuator, encoder,

and serial; the home pose of the robot; and it is a factory for

a set of joint transform function objects for the robot.

2PyMoCo can be branched from Launchpad: https://launchpad.
net/pymoco

3http://numpy.org/
4Measured using David A. Wheeler’s ’SLOCCount’ http://www.

dwheeler.com/sloccount/.
5http://www.universal-robots.com/
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2) FrameComputer Object: is the computational entity

for all kinematics computation. It is currently a single,

unspecialized class for unified kinematics computation for

all robot structures. For joint transform objects and static

link transforms, it relies on information retrieved from the

RobotDefinition interface at construction time.

3) RobotFacade Interface: is the main interface covering

the robot specific backend subsystem. Ultimately, in the

backend subsystem, there is a connection to the motion

controller entity of the operating robot. At any time, some

trajectory generator must be answering real-time requests

propagated from the robot motion controller through the

robot facade subsystem.

For illustrating the relationships of entities in setups for

real-time trajectory generation and robot application control

involving PyMoCo, two UML object diagrams are shown

and described in the following.

PyMoCo Runtime

Application Level

tlc:ToolLinearController

Native Robot Controller

rob_def:RobotDefinition

cm:ControllerManager

simple_app:SimpleApplication

rob_fac:RobotFacade

mc:NativeMotionController

fc:FrameComputer

Fig. 1. UML object diagram giving an overview of a simple PyMoCo
application, utilizing built-in trajectory generators managed by a Controller-
Manager object from PyMoCo.

The most simple runtime setup using PyMoCo for robot

control, illustrated by the UML object diagram in Fig. 1,

uses an object of the ControllerManager class, included

with PyMoCo. The ControllerManager class is managing

the switch of trajectory generators at the request of the

application code, ensuring that the switch will not skip a

control cycle request from the motion control level.

In the diagram in Fig. 1 weak or temporary associations

are represented by dashed lines and more persistent object

associations are illustrated by solid lines. The trajectory gen-

erator is exemplified by an object of the ToolLinearController

class. It uses the core PyMoCo entities and provides its

operational interface to a simple application; which is not

specified by PyMoCo. The simple application, developed

and provided by the user, thus only has to interface with

the ControllerManager object and the trajectory generator

objects that it requests from the controller manager.

Fig. 1 also indicates a layered structure, where the native

robot controller containing the motion controller is lowest,

the PyMoCo run-time system is in the middle, and the

application level at the top. In a simple setup as the one

illustrated, PyMoCo may be considered more as a software

service than a software framework, since the client system,

i.e. the simple application, is cleanly separated from the

PyMoCo code.

The specific set of trajectory generators that are managed

by the controller manager are the ones supplied with Py-

MoCo, and they will be discussed shortly in Section II-C.

Application Level

PyMoCo Runtime

Native Robot Controller

rob_def:RobotDefinition

custom:TrajectoryGenerator

pc:ProcessController

sensor1:SensorSystem

ice:IceConnector

app:ApplicationControl

rob_fac:RobotFacade

mc:NativeMotionController

sensor2:SensorSystem

ros:ROSConnector

fc:FrameComputer

Fig. 2. Overview of an advanced PyMoCo application, utilizing the
core PyMoCo objects and implementing custom trajectory generators with
PyMoCo resources.

A more advanced, and realistic setup for sensor-based real-

time trajectory generation, is illustrated in Fig. 2. It shows an

application control at the application level which is strongly

integrated with network communication systems, illustrated

by connectors over ZeroC Ice
TM

(Henning (2004) [19]) and

ROS; process control; sensor systems which naturally con-

nect externally; and with a custom trajectory generator. The

custom trajectory generator is developed using the PyMoCo

software framework resources and takes on the real-time

obligations toward the pertinent robot motion controller

through the robot facade.

 : ToolLinearController

 : RobotFacade

 : FrameComputer

 : RobotDefinition

 : MotionController

2: get_joint_pos

2

3.1: get_flange_pose

3.1

1: moco_notify

1

4: compute_joint_step4

5: set_joint_increment

5

6: : serial2encoder

6

7: encoder_setpoint

7
0: control_cycle_start

0

3.2: get_inverse_jacobian 3.2

Fig. 3. The real-time cycle illustrated as a UML collaboration diagram
among core PyMoCo entities, the robot motion controller, and a trajectory
generator (of the class ToolLinearController).

The detailed mechanisms of the control cycle involving the

core elements of PyMoCo may be perceived from the UML

collaboration diagram in Fig. 3. The focus here is on the

computational real-time cycle from the trajectory generation

level and down, and hence the application logic and control

is not included. The MotionController class is not a real

class, but included for representing the motion controller in

the native robot controller. The trajectory generator used for

illustration here is, again, of the class ToolLinearController.

The control cycle is started by a notification from the

motion controller to the robot facade in PyMoCo; typically
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containing a lot of status information such as encoder

readings, velocities, etc. The robot facade propagates the

notification internally to a subscribing trajectory generator,

which then, using PyMoCo run-time facilities, computes a

control step in response. This control step is returned in

serial joint kinematics coordinates to the robot facade, which

translates it to encoder values and then in turn responds to

the motion controller.

C. Included Trajectory Generators

A (real-time) trajectory generator is an entity which ulti-

mately carries the real-time responsibility of timely respond-

ing to the motion controller request for a new control-setpoint

in joint space; or rather the joint encoder space. Neither

the motion controller or the trajectory generators are core

PyMoCo entities.

PyMoCo includes a set of simple trajectory generators.

They cover the typical trajectory generators that are repre-

sented by motion commands in the application platforms of

standard industrial robot controllers. None of the included

trajectory generators implement any advanced strategies for

dealing with arm configuration singularities, joint speed

or acceleration violations, joint limits, or other types of

circumstances that may lead the motion control system to

fail. Self-motion, or internal, singularities are dealt with by

using a configurable singular value cutoff in the inverse Ja-

cobian computation; which is probably the simplest possible

strategy.

The most common trajectory generators in standard robot

controller are included: joint space linear motion, tool space

linear motion, and real-time correction-responsive tool space

linear motion. An additional two real-time responsive tra-

jectory generators are included, which are rarely found in

standard robot controllers, but immensely useful in real-time

sensor-based robot control: tool space velocity motion and

joint space velocity motion. The tool space velocity generator

is the most frequently used in real-time sensor-based robot

control applications at our laboratories.

III. REAL-TIME PERFORMANCE

The high flexibility and versatility of Python as an appli-

cation platform for robot control, and as the implementation

language of PyMoCo alike, come at the cost of compu-

tational performance and real-time quality. The real-time

performance of a PyMoCo-based application is thus crucial

to investigate. It is the outcome of such an investigation

which will clarify whether PyMoCo is usable and feasible,

and, if at all, for which applications and robots.

This section presents results of an experimental setup

based on the Universal Robots controller. The Universal

Robots UR5 robot is used extensively in our laboratories,

since it may be externally controlled and exhibits fairly low

control delay and short motion response time; see Lind et al.

(2010) [20].

Schrimpf et al. (2012) [21] compares three different setups

for real-time trajectory generation; one of which is PyMoCo

and the others based on OROCOS kinematics. Though their

experiments are performed on one PC using local loop

back networking, and thus do not measure the over-the-wire

performance, the comparison is instructive. The purpose of

the experiments presented in this section is different, in that it

aims at making absolute, over-the-wire, realistic performance

tests that are valid for PyMoCo-based trajectory generation

applications.

A. Experiment Setup

The motion controller in the Universal Robots controller

is interfaced at 125Hz, i.e. a control period of 8ms, and

requires a response in 4ms. In the real controller, the native

application platform and trajectory generator can be shut

down, and a custom “router” application started. This router

application listens for external connections over TCP, and

mediates contact with the motion controller internally in

the robot controller. The router application, representing the

motion controller, can be emulated on an ordinary PC, the

purpose of which it is to log the response times from a

PyMoCo application running off another PC and connecting

through a switch.

All hardware used is consumer grade and not of highest

performance. Two PCs, both with an Intel i7 processor

are used for performance measurements, connected through

a standard 100Mbit s−1 switch, and using the on-board

Ethernet cards. The most important hardware to detail is

the PC running the PyMoCo application. It is an Intel i7-

860 processor running at 2.80GHz with four cores and two

threads per core.

Both PCs use the stock GNU/Debian Linux systems with

Preempt-RT patched kernels of version 3.2.0-3-rt-686-pae;

i.e. Real-Time Linux kernels. The most important software

versions to mention are Python, 2.7.3rc2, and NumPy, 1.6.2-

1. All software and kernels involved are taken from the

official Debian testing repositories6.

Starting from a standard Debian desktop installation, a

checklist of simple tweaks to ensure the best possible real-

time performance was followed:

1) Switch to single user mode. ($ telinit 1)

2) CPU frequency scaling should be set to

“performance”. ($ cpufreq-set -c [0..7]

-g performance)

3) Disable garbage collection in the Python

code for the real-time critical computations.

(gc.disable()/gc.enable())

4) Put the control process in a real-time scheduler queue.

($ chrt 99 ...)

5) Run the RT-critical processes from a remote login-

shell. ($ ssh ...)

6) Boot the Real-Time Linux kernel.

All experiments were conducted at a length of 100 000
samples, which at 125Hz amounts to about 13min running

time.

6http://ftp.debian.org/debian/dists/testing/

94

http://ftp.debian.org/debian/dists/testing/


B. Best Condition Performances

The most important experiments were to measure the

inherent response time of the PyMoCo run-time, by using

the ZeroVelocityController, and to performance test the two

most useful of the included trajectory generators: ToolVeloci-

tyController and ToolLinearController. All experiments were

executed under the best obtainable real-time conditions, as

per the check list in Section III-A.
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Fig. 4. Response time distribution for three different controllers. Average
response time is marked by a vertical blue line and worst-case is marked
by a vertical red line.

The results are visually observable from Fig. 4. Statistical

summaries of the response time samples are shown in Table I.

Trajectory Generator Worst [s] Average [s] Std. dev. [s]

ZeroVelocityController 0.00144 0.00115 0.00010

ToolVelocityController 0.00174 0.00149 0.00006

ToolLinearController 0.00236 0.00201 0.00008

TABLE I

STATISTICS OF MEASUREMENTS UNDER BEST REAL-TIME CONDITIONS.

These results show that the ToolLinearController is com-

putationally much heavier than the ToolVelocityController;

which was expected since it performs various checks along

its path to control bounded acceleration ramp-up and ramp-

down of the velocity. More importantly, the results also

show that both of the usable controllers are well within

the 4ms response time required by the Universal Robots

motion controller. The inherent response time of PyMoCo

indicated by the worst-case response time of the ZeroVe-

locityController gives the impression of the availability of

control computation time for any useful trajectory generator.

In case of a required 4ms response time, there is of the order

of 2.5ms time available for any trajectory generator in each

control cycle.

C. DH-Kinematics Performance

PyMoCo has a native kinematics formulation which is

flexible for specifying separately static link transforms and

joint transform functions. However, a DH formulation of the

kinematics is also supported, reducing the number of matrix

multiplications in the forward kinematics computation. The

DH formulation was used in one run with the ToolVeloci-

tyController under the same conditions as the ones used in

Table I. The comparable statistical results are seen in Table II

Kinematics Worst [s] Average [s] Std. dev. [s]

PyMoCo 0.00174 0.00149 0.00006

DH 0.00180 0.00151 0.00007

TABLE II

MEASUREMENT OF KINEMATICS IN DH FORMULATION.

It turned out that the DH formulation, contrary to the

expected, was slightly inferior to the standard formulation

in PyMoCo. This can be traced to NumPy being relatively

inefficient in assigning matrix element compared to multi-

plying matrices.

D. System Tweak Performance Effects

The last experiments addressed the effects of individual

omission of the various real-time enhancement tweaks, short-

listed in Section III-A. Results are given in Table III.

Tweak Worst [s] Average [s] Std. dev. [s]

All tweaks 0.00174 0.00149 0.00006

- Single user 0.00249 0.00206 0.00009

- CPU freq. sched. 0.00265 0.00212 0.00007

- Disable GC 0.00223 0.00156 0.00009

- RT scheduling 0.00203 0.00155 0.00005

- RT kernel 0.00183 0.00125 0.00005

TABLE III

EFFECT OF VARIOUS TWEAKS ON REAL-TIME PERFORMANCE.

It is observed from the table that all tweaks have signifi-

cant effect on the worst-case performance. The lower average

and higher worst-case response times of the standard kernel

are natural, since the low-level real-time enhancements in

the real-time kernel sacrifice some computational efficiency

for gaining lower worst-case latency. The fact that the

performance difference between a standard and a real-time

kernel is so low is evidence of the flow of the real-time

patches into the mainline Linux kernel over the recent years.

IV. DISCUSSION AND FURTHER WORK

This paper has presented an overview of the structure of

PyMoCo, a flexible, Python-based software framework for

trajectory generation and motion controller interfacing.

Various real-time performance experiments for assessing

its usability have been conveyed and the results have been

presented and discussed. Under the presented experiment

conditions, in terms of hardware, software, and system

setup, it can be inferred that PyMoCo may be a usable

software technology for trajectory generation in robot control

applications where the over-the-wire response time limit is

no lower than about some 3ms.
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The main contribution of PyMoCo is to provide users with

a very flexible framework for building real-time sensor-based

robot control applications at the laboratory prototyping stage.

Many laboratory prototyping projects have already utilized

PyMoCo, and it is considered good for learning and fast

prototyping. However, being tied to the Python language and

the Python run-time platform, it has no outlook of becoming

industrially real-time reliable.

The computational performance of contemporary CPUs

together with the current implementation and design of Py-

MoCo is the limiting factor for its use in various setups. For

instance, it is currently precluded that a KUKA LWR could

be controlled by a PyMoCo-based application over FRI with

maximum control rate. However, with CPU performance

increasing over time, such setups may be achievable for

PyMoCo in a not too distant future.

Notwithstanding the automatic performance gains of fu-

ture CPUs, there are a whole range of possibilities for

increasing the inherent performance of a pure Python ap-

plication. These range from downright porting of functional

code to C/C++ extension modules, whereby some flexibility

may be lost; over Cython (Behnel et al. (2011) [22]) for

automated translation and compilation of computationally

critical code blocks; with PyPy, a very fast re-implementation

of the Python run-time; to simply using more optimal and

specialized technologies within PyMoCo, e.g. integrating

PyKDL for kinematics computations as demonstrated by

Schrimpf et al. (2012) [21].

Among useful and functional features that will be ad-

dressed in the future work with PyMoCo are facilities for

trajectory blending. The methods described by Lloyd and

Hayward (1993) [23] and Volpe (1993) [24] are under

consideration.
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A holistic framework for planning, real-time control and model learning
for high-speed ground vehicle navigation over rough 3D terrain.

Nima Keivan1, Steven Lovegrove1 and Gabe Sibley1

Abstract— This paper describes a local planning, control and
learning framework enabling high-speed autonomous ground-
vehicle traversal of rough 3D terrain replete with bumps,
berms, banked-turns and even jumps. We propose an approach
based on fast physical simulation and prediction, which we
find offers numerous benefits: first, it takes advantage of the
full expressiveness of the inherently non-linear, highly dynamic
systems involved; second, it allows for the fusion of local
planning and model-based feedback control all within a single
framework; third, it allows vehicle model learning. The final
and most important reason to use physical simulation as a
unifying framework is that it works well in practice. The system
is experimentally validated on a high speed nonholonomic
remotely controlled vehicle on undulating terrain using a
scanned 3D ground model and motion capture ground-truth
data. Parameter reduction is achieved with the use of cubic
curvature control primitives and a fast precomputed lookup
table.

I. INTRODUCTION
Recent developments in path planning and navigation have

enabled operation in increasingly challenging environments.
The use of motion primitives [9] and stochastic search
methods such as RRT and RRT* [8] [6] have resulting
in algorithms that successfully navigate complex obstacle
fields even in higher order configuration space. A major
advantage of these methods is that they can employ nonlin-
ear dynamics models thereby enabling physically accurate
planning in complex environments without approximation
or linearization. However, this advantage comes at a perfor-
mance price as stochastic methods invariably sample infeasi-
ble trajectories. Conversely, optimization based methods [4]
employ effective initial guesses and numerical or analytical
optimization techniques to rapidly converge on optimal paths.
However due to the reliance on the accuracy of the initial
guess, these methods are susceptible to failure or suboptimal
performance depending on the quality of this guess.

The quality, optimality and methodology of the plans
notwithstanding, their open loop performance in real robots
is inevitably impaired by the existence of imperfections or
extraneous inputs that may not have been included in the
dynamics model. Therefore for real-life applications, some
form of closed loop control is desired. Moreover, both the
planner and control systems rely on an accurate model in
order to properly control and plan for the robot. Due to
the difficulty of obtaining accurate model parameters, it
is desirable to learn model parameters by observing the
response of the robot to control inputs. Recent developments

1N. Keivan, S. Lovegrove and G. Sibley are with the Department
of Computer Science, George Washington University, Washington DC,
nima|slovegrove|gsibley@papercept.net

Fig. 1. a) Local plan (red curve) generated between two points on a
3D scanned quarter pipe ramp and the simulated vehicle tracking the plan
in open-loop mode. b) Motion captured test vehicle performing the same
manoeuvre.

in Model Predictive Control(MPC) [3] and Learning-based
Model Predictive Control (LBMPC) [2] [10] have strived to
both implement model-based control schemes and to improve
the underlying model parameters by observing the response
of the system to inputs. The advantage that these schemes
hold over more traditional control methods is twofold: the
incorporation of increasingly complex models, and the abil-
ity to generate control policies over a predicted series of
timesteps into the future. The latter offers clear advantages
when controlling an infeasible trajectory or one that was
made using an inaccurate model.

An alternative to model predictive control, traditional
feedback systems use static and/or dynamic feedback of the
state to determine the controls for the next time steps. Recent
developments in this field have resulted in methods allowing
the calculation of Lyapunov functions for nonlinear systems
[5] and defining graphs of Lyapunov-stable region around
states as in the case of LQR-Trees [11]. Generally speaking,
these methods rely on the linearization of the state transfer
function in order to analytically obtain control policies.
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Considering that the planning, MPC and model learning
systems all utilise a model of the system, a unified system
could be conceived to utilise the same model to perform
all three tasks. The main contribution of this paper is
such a system encompassing planning, control and online
model learning using a unified, simulation-based model and
operating in real time. We use a singular boundary value
solver in all three cases in conjunction with cubic curvature
polynomials for parameter reduction [7] . This allows accu-
rate planning and control in full 3D environments and allows
the learning of physical model parameters such as wheel
radius, steering angle ratios and friction coefficients. Ground-
truthed experimental evidence is also presented showcasing
the results of the system planning over waypoints on un-
dulating terrain and subsequently tracking the trajectory on
a high speed nonholonomic robotic platform with on-line
model learning.

II. METHODOLOGY

The different components of the planning and control sys-
tem rely on a unified boundary value solver which produces
a control law in order to navigate the robot between the
start and goal 6DOF poses. For the purposes of this paper,
we have implemented a parameter reduction and boundary
value solver to plan for and control a nonholonomic remote
control robot through high speed trajectories on undulating
terrain. This formulation relies on a good initial guess for the
steering and acceleration commands between two waypoints
w1, w2 each parametrized as [x, y, z, p, q, r, v] where v is the
desired velocity with which the robot should reach the 6DOF
coordinates of the waypoint. The optimization is facilitated
with an initial guess utilising cubic curvatures for steering,
and a linear velocity profile between waypoints.

A. Dynamics Model

The centrepiece of the system is the dynamics model. We
use the Bullet Physics Engine [1] to simulate the dynamics
of a vehicle with nonholonomic constraints on 3D terrain.
A multithreaded framework allows the full use of modern
multicore processes resulting in quick simulations for finite-
difference based optimization. Traditionally, the state transfer
function is defined as:

x̌ = f(x, u, p)

Where x is the current state, u is the control input, and p
defines the model parameters. In the case of the numerically
integrated Bullet Physics model, the state transition is defined
as:

xt+1 = F (xt, u, p)

Where F (x, u, p) encompasses the entirety of the dynam-
ics of the vehicle and interaction with the terrain. In general
terms, this function can be replaced with any simulation
system resulting in an update in the state, given the control
inputs, previous state and model parameters.

Fig. 2. Integration of cubic curvature polynomials in Cartesian space
between [0, 0, 0, 0] and [2, 0.6, π, 0] with varying values of π

B. Parameter Reduction

The boundary value solver used relies on the reduction in
control space dimensionality with the use of a control law.
In the proposed system, we have employed cubic curvature
polynomials [7] as a means to parameter reduction.The
trajectory curvature is parametrized as a function of the
travelled distance in the following form:

κ = a+ bs+ cs2 + ds3 (1)

Where a is the starting curvature, b, c, and d are the
cubic polynomial coefficients and s is the distance travelled
along the trajectory. Individual polynomials are constrained
using the endpoints coordinates [x, y, θ, κ]. To obtain the
cubic parameters necessary to reach the desired endpoint, a
precomputed lookup table is employed followed by a Gauss-
Newton optimization using the analytical Jacobian of the
polynomial. Figure 2 shows an example of cubic curvature
polynomials integrated in 2D Cartesian space. However since
the planner operates in 3D space, we project the curvature
polynomial onto a 2D plane, with a normal which is linearly
interpolated between the normals of the two waypoints as
shown in Figure 3. This allows the 2D curvature to better
estimate the control law that will guide the vehicle and
resolves singularities from waypoints perpendicular to the
ground plane.

Fig. 3. The projected 2D trajectory (dotted blue) between two 3D waypoints
on a curved manifold. This serves to better estimate the trajectory between
the waypoints as well as eliminate singularities when projecting waypoints
which are perpendicular to the ground plane.
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C. Model Compensation

The linear velocity profile used between waypoints em-
ploys a constant acceleration model. However, due to the
underlying physics-based vehicle model, this simple accel-
eration control law does not constitute a good initial guess.
To improve upon this guess, several compensation factors
are utilised to mitigate the extraneous influences introduced
by the terrain and vehicle dynamics. Compensations are
applied iteratively after each physics model update. This
allows folding in detailed terrain information such as slope
and also simulated vehicle parameters such as suspension
force and extension. Furthermore, the underlying constant
acceleration model remains valid once all other factors are
compensated for.

1) Gravity Compensation: The constant acceleration
model used between waypoints is by definition unable to
account for terrain slope and undulation effects. We have
implemented a simplified compensation model which ac-
counts for the axial forces imparted by wheel interaction with
inclined terrain (See Fig. 4a). The position of the wheels
as well as the corresponding contact normal is obtained
after each simulation step, and used to compensate the
acceleration model for the following step.

2) Steering Compensation: Figure 4b shows the axial
force component imparted as a result of the front wheel
deflection during cornering. This force results in significant
deceleration during tight turns and is compensated for in a
similar fashion to gravity compensation at the end of each
simulation step.

3) Friction Compensation: Friction compensation is un-
dertaken iteratively similar to previously discussed factors.
At each timestep, the friction forces on each wheel are
calculated by the physics model. This is then used to offset
the constant acceleration model accordingly. We have opted
to use a simple friction model based on static/dynamic
coefficients of friction, and the normal forces imparted on
the springs. This information is readily available from the
physics-model at each simulation step.

D. Boundary Value Solver

The boundary value optimization is performed by min-
imizing the trajectory cost C which we have defined as
the 6 dimensional residual between the destination waypoint
and the simulation endpoint. The optimization is performed
by first solving a Gauss-Newton iteration with line search,
and if the error norm is not reduced, a coordinate descent
step is performed if possible. The Jacobian of the forward
simulation is defined as:

J =


∂c1
∂p1

· · · ∂c1
∂pn

...
. . .

...
∂cn
∂p1

· · · ∂cn
∂pn

 (2)

Where pn is a control law parameter (such as a curvature
polynomial coefficient) and cn is a cost parameter. In the
presented implementation, the cost is calculated as projected
back onto the 2D plane of the cubic curvature polynomial

g

n1

n2

a) b)

Fig. 4. a) Axial forces (in red) resulting from wheels on inclined terrain.
b) axial forces (in red) resulting from front wheel steering deflection.

(See Fig. 3) and is parametrized as [x, y, θ, v]. Each col-
umn ∂c1

∂pj
· · · ∂cn∂pj

of J is calculated by pushing forward the
dynamics model using a set of control parameters p with
perturbations ±ε along dimension j. This computation is
accelerated by the use of a multithreaded forward physics
model, solving for all dimensions of the Jacobian simulta-
neously. The Gauss-Newton delta (δp) is then calculated by
Cholesky factorization as follows:

JTJ → RTR

RT y = JT b

Rδp = y

Where b is the vector of residuals calculated by running
the current parameters p and obtaining the endpoint error(s).
The validity of the assumption of quadratic convergence
made by this optimization is dependent on many factors
including interactions with the terrain and the dynamics
model. After obtaining the Gauss-Newton δp, we perform
a multithreaded line-search step by pushing forward the
physics model simultaneously with several scaled values of
δp.

pn+1 = pn + λ(δp)

Where λ ≤ 1 the a scaling factor. If none of the scaled
values of δp improve upon the error norm, we perform
a coordinate descent if possible, by using the best norm
obtained when calculating the Jacobian (Eq. 2) by finite-
differences. The optimization ceases if the either the error
norm is improved past a certain threshold, or if we are in
a local minimum as indicated by the inability to perform a
coordinate step to reduce the error norm.

E. Real-Time Control

In this section we present an MPC-like real-time control
scheme based on fast replanning to account for inaccuracies
and extraneous influences. Similar to MPC based control
systems, our approach is formulated by constantly optimizing
the trajectory ahead of the vehicle by solving new control
plans which provide a viable control law from the vehicle’s
current position, to a point on the trajectory further ahead.
As part of the holistic approach, we have used the same
boundary value solver previously described to plan between
waypoints, in creating the control plans. Due to the unified
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lookahead

Fig. 5. Replanning-based control. The active control plan’s (red) initial
curvature matches that of the vehicle’s current path curvature. Each control
plan is optimized to plan to a point ahead on the trajectory based on a
pre-define lookahead time.

underlying steering control law, the control plans tend to
converge back onto the original trajectory, thereby avoiding
the pitfalls of follow-the-leader trajectory trackers which are
prone to diverge if the target vehicle is set too far ahead, or
oscillate if the target vehicle is too close. However, in order
to achieve this behaviour, the starting curvature (denoted by
the constant a in Eq. 1) of the control cubic curvatures has to
match that of the vehicle’s instantaneous path curvature as
shown in Figure 5. This is also a requirement for smooth
steering between control plans, as each will start with a
curvature equivalent to that of the vehicle’s current path.
Consistent starting curvature is guaranteed by setting the
constant a before the 2D optimization which solves Eq.
2. However, if the initial curvature required is too high,
the 2D cubic required to solve the control plan might be
infeasible. In these cases, the control system falls back to
an initial curvature of zero to solve for a feasible control
plan. Ideally, an alternative control law formulation would
enable control plans that converged rapidly with any choice
of initial curvature.

Furthermore, each control plan takes a small amount of
time to optimize via the boundary value solver. During this
time, the vehicle will be following the previous control plan.
Our implementation includes a timestamp which is used to
smoothly interpolate between plans as they become available.
The control plans also constitute an any-time algorithm, as
the optimization simply improves upon the quality of the
initial guess with each iteration. The more time given to
the algorithm, the higher the accuracy of the endpoint will
be. It must be noted that each control plan is a valid set
of controls that should ideally converge the vehicle back
onto the trajectory in open-loop mode, given an accurate
vehicle and terrain model. Therefore real-time control is
established if the time taken to optimize tractable control
plans is less than the lookahead time, allowing constant
replanning without ever exceeding the bounds of a single
control plan.

F. Online Model Learning

The quality of the control and planning provided by the
aforementioned system relies significantly on the quality of
the underlying model. Since a full physics-based model is
used in the optimization, the number of parameters which

segment 
    time 

trajectory time 

Fig. 6. The observed trajectory (black) shown with segments and their
respective simulation results (red). The disparity between the simulation
endpoint and the segment endpoint is the residual which is minimized in
the optimization. If the residual is zero, the model perfectly matches the
real vehicle’s performance.

could be adjusted rules out the possibility of manual tuning.
We propose an optimization based learning system which
is formulated almost identically to the control and planning
systems, and which serves to tune select parameters in the
model to match those of the real vehicle. The proposed
methodology involves observing the vehicle and also the
control commands given to it for a period of time, and
optimizing the underlying physics model to replicate the
observed behaviour, given the same control commands. We
formulate the optimization by splitting the observed trajec-
tory into segments as shown in Figure 6. Each segment is
then simulated and a Jacobian formed as per Eq. 2 but where
pn is a model parameter which is changed by ±ε. Due to
the nature of the optimization, we can obtain JTJ and JT b
for the trajectory directly as follows:

JTJ =

n∑
i=0

JT
i Ji

Jb =

n∑
i=0

JT
i bi

Where Ji is the Jacobian if the ith segment, n is the total
number of segments, and bi is the error vector of the ith
segment which we have defined as the disparity between the
observed trajectory and the final position of the simulated
vehicle (See Fig. 6). We then apply the resulting δp to the
model and repeat the process. As per the planning and control
optimization formulations, the learning system implements a
Gauss-Newton and line search stage which is followed by
a coordinate descent stage if needed. The optimization ends
when either a sufficiently small norm is obtained, or if a local
minimum is detected. The learning system is implemented as
an on-line algorithm allowing continued refinement of model
parameters.

III. RESULTS

The planner, control and learning systems were experi-
mentally validated in a motion captured environment, using
a terrain model which was 3D scanned using a Microsoft
Kinect sensor combined with the motion capture system and
a fusion algorithm. Due to the simulation-based model, any
method of obtaining 3D terrain data could be used to simu-
late the dynamics. This includes real-time acquisition using
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cameras, laser scanners and/or dense tracking and mapping
(DTAM) methods. In our experiments the waypoints were
manual placed over the terrain in order to put the vehicle
through desired manoeuvres including straight tracks, curves,
steep inclines and jumps.
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Fig. 7. Acceleration (red) and steering (blue) commands generated by the
planner after optimization for the ramp manoeuvre depicted in Fig. 1. Note
the gravity compensation during the uphill and downhill sections resulting
in acceleration and braking forces.
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Fig. 8. Motion capture results (blue) of the control system running on a
planned trajectory (red) with a small jump (center) and quarter-pipe ramp
manoeuvre (left). The model was tuned using a combination of the learning
system and manual adjustments.

A. Boundary Value Solver

Due to the quality of the initial guess, the boundary
value solver successfully resolves feasible trajectories be-
tween waypoints. Furthermore the underlying model follows
these trajectories precisely in open-loop control. However
the choice of waypoints heavily influences the success or
failure of the planner, as is expected. Figure 1 shows a plan
generated between two waypoints on a scanned 3D model
of a quarter-pipe ramp and Figure 7 shows the resulting
acceleration and steering commands. Gravity compensation
can be seen in Figure 7 and is vital to the feasibility of this
plan as the vehicle needs to accelerate uphill and decelerate
downhill in order to maintain velocity. The local planner can
fail if the waypoints are poorly positioned or their velocities
chosen improperly, for example if two waypoints are placed
either side of a wall.

B. Real-Time Control

The real-time controller was tested on a trajectory includ-
ing a small jump and sharp turn over a quarter-pipe ramp.
Figure 8 shows the resulting vehicle path (blue) compared
to the planned trajectory (red). It must be noted that the
model used in this experiment was tuned using a combination
of the learning system and manual adjustments. Manual
adjustments were necessary as model-learning was not per-
formed in high acceleration scenarios such as jumping, and
small adjustments to the learned parameters was required to
optimize the performance. The results obtained show that the
vehicle is capable of accurately tracking the trajectory even
in challenging manoeuvres, however as seen in Figure 8 ,
divergence can still be observed in the case of jumps where
the steering is ineffective. This has the tendency to disrupt the
real-time controller, as the boundary value Jacobian becomes
invalid if changes in control input do not adequately perturb
the endpoint of the control plan. This is the case when the
vehicle is airborne.
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Fig. 9. Motion capture results of the control system (top graph) running
on a planned figure-eight trajectory (red) while performing online model
learning. The trajectories at various times show the improvement in tracking
as the model parameters converge (bottom graph) to stable values.

C. Online Model Learning

The learning system was tested on a figure-eight trajectory
over two model parameters: friction coefficient and wheel
base. These model parameters, while not being all encom-
passing in their influence over the model have significant
impact on the steering and acceleration response of the vehi-
cle. They were chosen to test the learning system’s response
to deviations from the trajectory. While these parameters
have underlying physical units, it is not expected that the
values obtained from the model learning will reflect these
values. This is due to the existence of unknown factors
such as servo command coefficients, that will ultimately
change the physical bases of the parameters. Nevertheless,
the learned wheel-base parameter was observed to converge
reliably to a value close to the actual vehicle wheelbase of
0.28m. However, it is expected that learned values will bring
the underlying model closer to the real-world vehicle, and
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therefore improve planning and control. Figure 9 shows the
results of model-learning on a flat figure eight trajectory
at different time intervals. It is evident that as the model
parameters for wheel base and friction change, the adherence
of the vehicle to the intended trajectory is significantly
improved.
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Fig. 10. Aggregated 6 DOF pose (blue) and velocity (green) error as
a function of time performed on the figure-eight trajectory of Figure 9.
The effect of the convergence of parameters can be seen on the repeated
trajectory error pattern.
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Fig. 11. Model parameter evolution during on-line learning for multiple
experiments on the figure-eight trajectory of Figure 9.

Figure 10 shows the aggregated position and velocity error
for a single run on the figure-eight trajectory, while perform-
ing model learning. It can be seen that the repeated error
pattern around the trajectory monotonically decreases as the
parameters converge. This also corresponds to a significant
visible reduction in overshoot and improved tracking. Figure
11 shows the parameter convergence over multiple runs on
the figure-eight trajectory and with different starting values
for the parameters. It can be seen that the parameters, while
not perfectly converging to the same point every time, tend
to arrive at similar values.

IV. CONCLUSIONS

We have presented a holistic solution to local planning,
real-time control and model learning which uses a unified
simulation-based underlying physics model, folding in com-
plex vehicle and terrain dynamics. The presented solution
uses cubic curvature control laws to reduce the dimension
of the control space while employing iterative compensation
to deal with extraneous effects such as friction, terrain slope
and steering deceleration. The solution was experimentally
validated on a motion-captured vehicle and shown to execute
manoeuvres on banked terrain and small jumps in real-time.
However the real-time control system is still susceptible to
disruption over jumps, and the model learning system has
not been fully validated with a large number of parame-
ters. Further experiments should also evaluate the ability
to produce physically accurate model parameters. However,
both systems have been shown to work well in practice and
have produced good results in a challenging setting. Future
work will be aimed towards testing the system on more
challenging terrain, validating the model-learning with more
parameters and implementing global planning solutions to
place waypoints using the same holistic approach.
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 

Abstract— This research work describes a method to create a 
geometric feature (3D plane) based map using a differential 
drive mobile robot in an indoor environment. Two algorithms 
namely Hough Transformation and Random Sample Consensus 
are used separately to extract multiple 3D planes from the point 
cloud data and the results are compared. An Octree based data 
structure is used to create and store the generated planner map 
of the environment. Furthermore a simple error analysis on the 
estimated parameters of the plane from both RANSAC and 
Hough Transformation algorithm in a test environment is 
presented. 

I. INTRODUCTION 

3D Map building is fundamental to the autonomous 
navigation of the mobile robots in real world environment. 
Furthermore it could help mobile robots to reason about 
environment. State of the art mobile robots use 3D range 
scanning devices such as laser scanner, time of flight cameras, 
stereo cameras and RGB-D [21] cameras to sense the spatial 
environment and construct the map from acquired point 
clouds. Traditional computer vision solutions to construct 3D 
maps from multi-view videos or related images are 
computational resource demanding and time consuming. 
Geometric features such as lines and planes are prevalent into 
the manmade environments such as offices and factory floors. 
Mobile robots can use such geometric features to construct a 
map for collision free autonomous navigation and localization 
in such environments. 

In this research work we demonstrate building a 3D 
geometric map of an office environment by using a ground 
mobile robot equipped with a Microsoft Kinect camera. It is 
an inexpensive camera which provides a color image stream 
and a depth image stream in an indoor environment in real 
time which can be very useful for dense 3D color mapping in 
cluttered indoor environments. Despite of the impressive 
acquisition rate the raw data is unsuitable for navigation and 
real-time 3D mapping because of the enormous amount of the 
data to be processed.  Therefore, geometric features such as 
planes are extracted from the raw 3D point clouds. 

To create the model of the environment several scans have 
to be fused. The fusing process is easy if the position of the 
scanner is known otherwise scan registrations have to be 
performed to estimate the pose of the scanner. In this 
research work we have not concentrated on the scan 
registration and a basic analysis of Kinect range 
measurement error is performed, but have not used to correct 

 
 

the measurement because of small error. We have also 
assumed that the mobile robot has been already localized 
thus an accurate mobile robot pose is available for mapping. 
For detailed Kinect sensor range measurement error model 
one could refer [22], [8]. 

A. Related Work 

Various research works [1], [2], [3], [4] have been done 
until now to extract the 3D planes from the point cloud data 
acquired from different range sensor devices and build the 3D 
map of the environment.  Asad [4] has proposed a mapping 
system for mobile robots which used height maps created 
from range images for path planning. Pathak [1] proposed a 
method for 3D mapping by a mobile robot, furthermore, his 
proposed method utilizes the uncertainty of the plane 
parameters to compute the uncertainty in the pose computed 
by scan registration. Weingarten et al. [3] proposed a method 
for plane fitting for laser range scanner data and fuses 
matching planes together to find a compact 3D model. 
Andreasson et al. [5] uses an approach which fuses both color 
and range information to detect 3D planes.  

 Apart from various mapping algorithms for mobile 
robots different sensors have also been used in combination 
with mapping algorithms to map 3D environments. Such 
sensors include laser scanners [19], stereo vision and 
monocular cameras [11] and time of flight camera [20]. 2D 
laser scanners are limited in use for mapping environments 
which contains simple geometric shapes; furthermore the 
obstacles which are above or below the scanned planes cannot 
be detected e.g. downward stairs. Where the stereo systems 
are dependent on lighting conditions and cannot detect planes 
in homogenous regions. Kinect sensor has brought acquiring 
colored 3D point clouds cheaper and quicker which in the 
past require expensive time of flight cameras. Furthermore, to 
acquire colored point clouds the system consisting of time of 
flight camera and image camera must be setup and calibrated. 
But Kinect combines the 3D range finding capability and the 
color information. 

Recently most of the research work which uses Kinect 
camera [6], [7], [8] has focused on extracted plane 
segmentation because of the sparsity, measurement range 
limitation and occlusion of the measurements. These research 
works have used the color image to complement the range 
limitation and sparsity of the depth measurement. The 
intensity information can help in segmentation of the 3D 
point cloud data by detecting edges in the intensity images 
corresponding to the area of interest in the 3D point cloud. 
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A common approach for mapping is to align point clouds 
by finding rotation and translation between consecutive 3D 
scans [13]. Henry [12] maps the environment using ICP and 
SIFT features. There exist numbers of other methods which 
extract the 3D planes from the raw point clouds.  Borrmann 
[15] uses the Hough transform to extract the 3D plane from 
the raw point clouds. Triebel [16] uses expectation 
maximization, Gallo [17] used RANSAC to extract the planes 
and Pathek [18] used the split and merge techniques to detect 
the planes.  

 Our focus in this research work is to build a framework 
for 3D mobile robot mapping which can be used in real time 
for SLAM, obstacle avoidance and path planning. Semantic 
mapping [14] can be applied as a post processing step to 
group the related geometric features in the map. The paper is 
organized as follows; section II describes the methodology of 
our research work in details. Section III describes the 
implementation of plane extraction algorithms and mapping. 
Section IV discusses the result obtained from the experiment. 
Section V concludes our work. 

II. METHODOLOGY 

This research work uses the plane detection algorithms to 
detect the planes from the raw Kinect data and registers them 
using octree data structure. Since Kinect sensor acquires 
enormous amounts of data, 9.2 million 3D points in one sec, it 
is challenging to process the data in real time because of the 
limited amount of computation resources available on mobile 
robots, furthermore, raw 3D point clouds from Kinect sensor 
are not directly useable. Some processing is required to 
reduce this amount of data to extract features information 
present in the raw 3D point cloud. The features could be point 
features, line features, color segmentations and shape 
detections. Extracting multiple geometric features from the 
range data is computationally demanding and directly related 
to the number of parameters required to represent the 
geometric model to be found in the raw point clouds. In our 
geometric mapping approach we have used 3D planes as 
geometric features because a plethora of 3D planes are 
available in structured environments. We have tested two 
algorithms namely RANSAC and Hough transformation to 
extract the 3D planes from the raw point cloud so that we can 
compare the performance of real-time geometric map 
building from the Kinect equipped ground mobile robot 

A. Data Association 

Octrees are data structures which can be used to partition 
the three dimensional space in an efficient way. The base 
octree is represented by a cube or a cuboid and is called root 
node. Its volume can be further discretized into eight new 
octants, which partition the space of their parent node. 
Depending on the needs of the application the depth of nodes 
can vary. Fig. 1 depicts an octree with a root node, a node and 
one leaf node, where data can be stored. 

 
Figure 1. Octree with three nodes. 

The main advantage of this approach is that there is no 
need to create child nodes, where there is no data for them 
and it's always possible to create a root node, if one exceeds 
the space given by the actual octree. Octrees offer a great 
flexibility to store and access 3D data. In most approaches 
each node represents a voxel in 3D which could be further 
discretized depending on the scan information during storing 
or the desired accuracy during rendering as described in [25], 
[26] and [31]. Once a point cloud is stored into an octree, the 
partitioning of the space can also be used to limit the data 
points to extract geometric features and therefore to help the 
extraction algorithms like in [27]. The data to be stored in the 
nodes are of course up to the user. In this research work 
planes in the environment are identified by their orientation 
and their center point. Each center point is located in one leaf 
node of the octree. In our octree discretization the root node 
has an edge length of 40 m and the leaf nodes have an edge 
length of 0.625 m. The idea to use the octree data structure is 
to simplify data association for detected planes. One leaf node 
is supposed to store only one plane. If a second plane should 
be registered into a node which already contains a plane, it is 
possible to decide which plane is the true plane. Since in this 
contribution the position of the plane greatly depends on the 
odometry of the mobile robot, which is not very accurate after 
a few meters of movement, it is almost impossible to decide 
which plane is true. Therefore each plane which is registered 
in a leaf node overwrites the existing one, in case there is one.  

Uniquely registered planes in the octree can be easily 
rendered into a 3D map. This is a simple but efficient way to 
reduce the amount of data in the map. Another advantage of 
the octree structure is the possibility to implement efficient 
path planning and collision avoidance algorithms. Jung [32] 
presents one of the first approaches which use a three 
dimensional octree map of voxel information to plan a path 
for a manipulator robot. Kazakov et al. [28] propose an octree 
based map for large scale environments to simplify the 
problems of path planning and collision detection for mobile 
robots. In their experiments they successfully show that their 
suggested path planning algorithms are able to suggest a path 
and to correct it, if necessary. 

B. Plane Extraction 

1) Hough Transform 
Hough transform is a well known algorithm in computer 

vision society to detect multiple models in the data compared 
to RANSAC which in its basic form assumes there is a single 
model present in the data. It can detect lines, planes, spheres 
and other parameterizable geometric objects in the input data. 
In spite of the robustness of the method against noisy data one 
drawback of this algorithm is its high computational 
requirement therefore many variations of the Hough 
transform exists to detect the desired model parameters. Apart 
from standard Hough transform other variations which exists 
are, probabilistic Hough transform, random Hough transform, 
adaptive probabilistic Hough transform and progressive 
probabilistic Hough transform. The plane equation in Hesse 
normal form can be defined by a point p on the plane with 
normal vector n to the plane which is at a distance ߩ from the 
origin, which is collinear to normal vector as shown in fig. 4. 
The normal vector or ߩ makes an angle ߠ with the z-axis and 
its projection in the x-y plane makes an angle ߮ with the x-
axis. Therefore, the equation of the plane can be defined as  
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௫݌ ∙ cosሺߠሻ ∙ sinሺ߮ሻ ൅ ௫݌ ∙ sinሺߠሻ ∙ sinሺ߮ሻ ൅ ௫݌ ∙ cosሺ߮ሻ ൌ                 (1)   .ߩ
 

The dimension of the Hough space is basically equal to 
the number of parameters of our model i.e. ሺߠ,߮,  ሻ. Each	ߩ
plane in Թଷ corresponds to a point in the Hough space and 
each point in Թଷ corresponds to a surface in Hough space. 
This surface represents all the possible planes where the point 
could belong to. Therefore, the transformation of the points 
௜݌ ⊂ ܲ from Թଷ to Hough space will generate surfaces in 
Hough space. The intersection of three surfaces in Hough 
space results in a point in Hough space which corresponds to 
a plane in Թଷ on which the three points which generates the 
surface lies on. All points whose surfaces in Hough space 
intersect at a point correspond to the same plane in	Թଷ. 

We have used a random Hough transform to detect the 3D 
planes in the raw 3D point clouds. Instead of generating 
surfaces for each point ݌௜ in Թଷ into Hough space, which is 
very time consuming we used the fact that a plane 
corresponds to a single point in Hough space, therefore, it is 
very fast to compute a plane from three random points from a 
small circular region and transform the estimated plane to 
Hough space, this results into a significant faster algorithm 
for real time implementation. The pseudo code of the 
randomized Hough transform is as follows: 

 
Do until DetectedPlanes < 8 and TotalPoints > MinPoints 

Randomly select ( ଵܲ, ଶܲ, ଷܲ) from a random circular region 
Calculate plane from ( ଵܲ, ଶܲ, ଷܲ) 
Transform the Calculate plane from Թଷ to Hough space 
If local maxima is found in Hough space 

Delete points corresponding to plane from input points 
Calculate plane boundries 
Reset Hough space 

End if 
End Do 

Algorithm: Randomized Hough Transform Algorithm 

 
The Hough discretization size of the Hough transform 

depends on the accuracy required and the available memory. 
For our implementation we have discretized the Hough space 
into 1cm for ߩ from 1cm to 500cm, 1° for ߮ from -180° to 
180° and 1° for ߠ from 0° to 180°. Using the above 
discretization the memory requirement for Hough space is 
found to be 125MB. We have found out that the predominant  
part of the time required by the randomized Hough transform 
is required to reset the Hough space, therefore the choice of 
discretization for plane parameters has been chosen based on 
the possible orientation of the planes in the input raw 3D 
point clouds. 

2) RANSAC 
 

A common approach to identify geometric objects in a 
scene of 3D points is the use of the RANSAC algorithm, 
which was introduced by Fischler [24]. It overcomes the 
weakness of a normal least square approach which can't 
distinguish between inliers and outliers in the measurement 
data. Instead of using all the available data to calculate the 
model parameters it checks for each data point if it should be 
considered as an inliers or an outlier to the model. Therefore 

in the end only inliers are used to derive the object 
parameters. In this paper the RANSAC algorithm is used to 
identify planes in clouds of 3D points. A basic RANSAC 
algorithm is used here. It takes in a first step three non-
collinear, random points P1(x1,y1,z1), P2(x2,y2,z2) and 
P3(x3,y3,z3) out of the point cloud and sets up a plane equation 
using the equation 

อ
ݔ െ ଵݔ ݕ െ ଵݕ ݖ െ ଵݖ
ଶݔ െ ଵݔ ଶݕ െ ଵݕ ଶݖ െ ଵݖ
ଷݔ െ ଵݔ ଷݕ െ ଵݕ ଷݖ െ ଵݖ

อ ൌ 0. (2) 

In the second step it sorts the remaining points into inliers, 
which have a minimum distance to the plane, and outliers, 
which have a greater distance to the plane than a defined 
threshold. The point to plane distance threshold for RANSAC 
is chosen to be 1 cm because the surfaces in our test 
environment are very flat and also we have small errors in 
Kinect’s range measurements. A distance between a 3D point 
and a plane is calculated by 

݀ ൌ ߙݏ݋ܿ	ݔ ൅ ߚݏ݋ܿ	ݕ ൅ ߛݏ݋ܿ	ݖ ൅  (3)        ,݌

where d is the distance from the point P(x,y,z) to the plane 
and cosα, cosβ, cosγ and p are the parameters of the plane in 
the hessian form. Steps one and two are repeated until a 
satisfying number of inliers are found or a maximum number 
of iterations are executed. The number of satisfying inliers is 
50,000 and the maximum number of iterations are 500. The 
identified inliers are used to calculate the plane parameters 
using the hessian description of a plane which is given as: 

ߙݏ݋ܿ	ݔ ൅ ߚݏ݋ܿ	ݕ ൅ ߛݏ݋ܿ	ݖ ൅ ݌ ൌ 0,        (4) 

which can be rewritten as 

ܺܣ ൌ 0,                   (5) 

where A represents a matrix containing the plane 
parameters in each row which solves the equation for the 
matrix X which contains the homogeneous coordinates of 
each point P in its columns.. This homogeneous equation 
must be solved by using least square techniques. The solution 
of the above mentioned over-determined system is found by 
using the Singular Value Decomposition (SVD) 
implementation of the library Sho [23]. 

The RANSAC algorithm is applied for a maximum of 8 
iterations on the outlier point cloud from the previous 
iteration, but stops if the amount of remaining points drops 
below a threshold. This avoids that points could be part of 
different planes and helps the algorithm to find smaller planes 
in the point cloud. Much more complex RANSAC algorithms 
do exist like [27], [30] but since in this research work only 
planes are extracted and no spheres, cylinder or tori, this 
complexity is not needed. 

Since the robot pose in the world coordinate system is 
known from the odometry, it is possible to register a detected 
plane in the world coordinate system and to construct a map. 

III. EXPERIMENT 

During all experiments a laptop, having an Intel® 
Core™2 Duo processor, running at 2.8 GHz, equipped with 8 
GB RAM and running with a 64 Bit Linux, is used to acquire 
and to store all the sensor information needed for the different 
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experiments at a rate of 5 Hz. The amount of Kinect sensor 
data is very huge, which makes storing it to a problem where 
traditional HHDs are a bottle neck. Therefore the Laptop is 
equipped with an SSD which allows data storing at very high 
data rates, which helps to acquire the data at defined time 
stamps. Later the offline data sets are processed to extract the 
needed data for the different experiments. 

Kinect sensor provides a horizontal and vertical field of 
view of 58° and 44° respectively and the angular resolution of 
0.08°. Furthermore, the device can be tilted ±30°. The 
working depth measurement range is between 0.8m and 5m. 
Kinect consumes about 250mA at 12V DC. It can acquire 
both depth stream and color stream of full VGA resolution 
(640x480) at 30Hz. Park [9] has found out also that the 
Kinect variance of measurements error for dark objects is 
smaller compared to the Hokuyo UBG-04LX-F01 laser 
scanner. Since the color and depth cameras in Kinect are 
factory calibrated therefore it is now an easy task to 
correspond the pixel information in both cameras.  One 
drawback of the Kinect is, it works only in indoor 
environments without sunlight. 

To validate the approach and to compare the different 
plane extraction algorithms presented in chapter II, three 
experiments are conducted. 

A.  Experiment I 

In the first experiment the Kinect sensor is mounted on a 
KUKA R16 manipulator robot and looks on a cuboid which is 
used as a reference object. All of its planes are orthogonal to 
each other and in this experiment two planes are in the field 
of view of the Kinect. The robot is used to change the view on 
the scene in defined angles. Under all changed view 
conditions the algorithms should be able to detect an angle 
around 90° between both detected planes of the reference 
object. The robot pose configuration is shown in fig. 2. Both 
Hough transform and RANSAC are supposed to identify the 
angle between the two planes of the reference object which 
correspond to the sides of the object. All together four 
different four different views of the cuboid are taken with the 
Kinect sensor. The robot angles of the four points clouds are 
listed in table I. 

TABLE I.  CONFIGURATION OF THE ROBOT AXIS DURING EXPERIMENT 

Robot Axis View 1 View 2 View 3 View 4 
A1 [°] 1.59 1.59 1.59 5.59 
A2[°] 90 90 90 90 
A3[°] -90 -90 -90 -90 
A4[°] 0 0 0 0 
A5[°] -50 -50 -50 -50 
A6[°] 0 20 -20 0 

B. Experiment II 

Here the Kinect sensor is placed on rotary indexed table 
which is placed on a table against a flat wall. The distance 
between wall and Kinect’s front wall facing side is measured 
to be 106 cm and the data is recorded. In a next step the 
Kinect is moved 50 cm further away from the wall and once 
more the data is recorded. From both positions we have 
calculated the standard deviation of the Kinect’s measurement 
range error, which will be discussed in the next section. 

 

 
Figure 2. Coordinate system of the KUKA robot. 

C. Experiment III 

In the third experiment the mobile robot moves inside the 
corridor of a building within the campus. It starts in the lower 
right side of the corridor and drives through it counter clock 
wise as is it depicted in fig. 3. TOM3D has a differential drive 
wheel base with two wheels and one castor wheel. Each 
wheel is equipped with a DC-motor integrated with gearbox 
and quadrature encoder. From those two encoders the x and y 
position of the robot and its orientation in the global 
coordinate system is calculated.  

 
Figure 3. Driving path of TOM3D on the first floor in the H-F building 

of the campus at University of Siegen. 

An electronic control board is designed for this robot 
based on a 16-bit Infineon MCU. The robot’s firmware is 
designed in a way that all sensor information is pre-processed 
at robot’s control unit and reports are sent to a PC via RS 232. 
On the top of the robot the Kinect sensor is mounted at an 
orientation of -90° around the robot's z-axis. Rotations around 
the x-axis and y-axis are set to zero, because the ground 
should not be in the field of view since the existence of the 
ground plane is preconditioned. TOM3D's and Kinect's 
coordinate systems are shown in Fig 4. It also shows that the 
normal vector of the plane is described by the spherical angles 
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ϑ and φ where the shortest perpendicular distance from the 
origin to the plane is described by ρ. If the Kinect would look 
straight forward into the moving direction of the robot, most 
information would be lost since the Kinect has maximum 
measurement range of 4 m and the parts of the corridor have a 
length of 10-16 m. Therefore the Kinect sensor looks to the 
right side of the robot, where most geometric information of 
the surrounding is located. The global coordinate system is 
placed at robot power-up position. 

 
Figure 4. Coordinate system of Kinect and Robot; representing the plane's 

normal vector in spherical coordinates. 
 

IV. RESULTS 

In this section the results of the experiments described in 
chapter 3 are discussed. It is also divided into three 
subchapters where the results of the different experiments will 
be presented and discussed. 

A. Experiment I 

From the first experiment the reference is the angle 
between the two planes on the cuboid which is 90°. Tab II 
shows the results on different views. Taken into account that 
the sides of the reference cube are not truly 90° due to 
production tolerances, we think that this result is acceptable 
for our approach.  

B. Experiment II 

In the second experiment the distance between a wall and 
the Kinect sensor is changed. We have measured the standard 
deviation of measurement error in rho for RANSAC and 
Hough transform to estimate the accuracy of the distance 
measurement from Kinect sensor. Tab III lists the results. 
First of all we can see the standard deviation of the Kinect 
measurement error increases with the distance, furthermore 
since the standard deviation calculated from both algorithms 
are almost the same therefore this in fact is the standard 
deviation of the Kinect’s measurement irrespective of the  

TABLE II.  DETECTED ANGLES BETWEEN TWO ORTHOGONAL PLANES IN 
DIFFERENT VIEWS 

Data Set View 1 View 2 View 3 View 4 
Angle between planes 
extracted by RANSAC 

87.7° 88.3° 87.3° 87.1° 

Angle between planes 
extracted by Hough 

Transform 
87.1° 87.4° 87.2° 86.3° 

 

algorithm used. Because of the small standard deviations 
of Kinect’s measurement error we think it is still useful to 
map environment with this sensor. 

TABLE III.  X-COORDINATES OF THE PLANE BASE POINTS AT DIFFERENT 
POSITIONS 

Standard deviation in ߩ measurement error  
Position 1 

106 cm 
Position 2 

156 cm 
RANSAC 3.9 mm 8.8 mm 

Hough Transform 2.5 mm 7.4 mm 

C. Experiment III 

From the resulted 3D generated map by the RANSAC, fig. 6, 
and the Hough Transform, fig. 5, both produce a visually 
comparable result. The difference between the two resulted 
maps is in the top left corner, where the RANSAC fails to 
find the correct planes, because the corresponding point 
clouds contain a high number of invalid points. In term of the 
execution time RANSAC took on average 50 ms to extract 
the first plane, whereas the Hough Transform took an 
average of 170 ms to extract a plane. Since no loop closure 
was used the difference between start and end point in both 
maps was expected. 

V. CONCLUSION 

The approach described in this paper is a good base to 
expand the framework for data association and loop closure. 
We could extract the plane boundaries by clustering the 3D 
points based on their position and color information, therefore 
more accurate plane boundaries would be expected if the 
objects have uniform color and smaller data association 
uncertainty because the additional color knowledge is added 
to the system.  

 
Figure 5.  3D Map generated using Hough Transform 
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Figure 6.  3D Map generated using RANSAC 
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Direct Trajectory Generation for Vision-Based Obstacle Avoidance

Roel Pieters, Alejandro Alvarez-Aguirre, Pieter Jonker and Henk Nijmeijer

Abstract— In this paper, a method for direct trajectory
generation for robotic manipulators is proposed. The method is
specifically designed for obstacle avoidance and can incorporate
kinematic constraints into the avoidance motion. In particular, a
point-to-point and multi-point trajectory generator is proposed
in which different levels of constraints can be established on via-
and end-points. The approach is direct in the sense that at every
time instant a new trajectory is generated, which allows the
trajectory to be changed at runtime. Moreover, when the final
conditions of the trajectory are altered such that constraints
would be violated, an optimization procedure is employed in
order to extend the execution time of the trajectory. This
effectively makes the trajectory time-optimal. The approach
is experimentally verified with a 7-DOF anthropomorphic
manipulator with time-synchronization of multiple trajectories.

I. INTRODUCTION

With the increasing demand of integrating robotics into
every day life and industry, safety requirements are still
a driving factor. In a human-centred environment, robot
motion has to be as smooth as possible and safety has to be
guaranteed. This implies a safe replanning of motion when
obstacles are detected. As current state-of-the-art approaches
differentiate between obstacle avoidance (i.e., path planning)
and traditional positioning (i.e., trajectory planning), the
problem of avoidance is usually solved by designing a new
path. This means that predefined kinematic constraints for the
trajectory are not taken into account for obstacle avoidance
and only a reactive motion guides the robot away from
objects (e.g. potential field, roadmap).

This combination of traditional motion control with direct
and online replanning of trajectories is the concept of this
paper. In particular, our approach designs a new trajectory
at every iteration, even when no obstacle is detected. This
enables the generation of a trajectory only for the next state
of the motion system based on current state and events. As
such, sudden, unexpected actions that need replanning of
motion can be taken into account. Direct trajectory design is
presented for point-to-point and multi-point positioning, for
different levels of constraints. More specifically, a different
choice of constraints on (via-)points and on the complete
trajectory itself will result in a different motion design. In
order to guarantee that motion bounds are not violated,
an optimization procedure is employed which regards the
extension of the execution time in order to meet predefined
kinematic constraints.

Roel Pieters, Alejandro Alvarez-Aguirre, Pieter Jonker and Henk
Nijmeijer are with the Eindhoven University of Technology, Department
of Mechanical Engineering, Dynamics and Control Group, PO Box
513, 5600 MB Eindhoven, The Netherlands, r.s.pieters@tue.nl,
a.alvarez.aguirre@ieee.org, p.p.jonker@tue.nl,
h.nijmeijer@tue.nl

A. Related work

Trajectory design for robot motion control is one of the
earliest fields of research in robotics. Traditional approaches
that are now accepted as standard implementations can be
found in many well-known textbooks (see for example [1],
[2]). It is well known that path planning [3] and trajectory
planning [4] are two different topics. The former considers
only the geometry of positioning, while the latter considers
time and can thus include constraints on for instance ve-
locity and acceleration. This difference is of importance, as
commonly, replanning of motion (e.g., obstacle avoidance) is
designed on the path planning level and motion is designed
and constrained separately by motor controllers.

Traditional trajectory generation is commonly based on
the assumption that initial and final conditions (e.g. velocity
and acceleration for a 5th order polynomial) are equal
to zero. The work of Ahn et al. [5] proposes a method,
denoted arbitrary states polynomial-like trajectory (ASPOT),
which designs a trajectory with arbitrary initial and final
conditions. The method generates the trajectories online,
however, constraints are not taken into account.

The work of Thompson et al. [6] describes a trajectory
generation approach which explicitly considers the presence
of obstacles. The method entails adding a fourth order term to
a cubic polynomial and a cost function to the state equations.
Solving for the parameters of the polynomial given initial and
final conditions then generates polynomial trajectories which
minimise the cost function.

The work of Namiki et al. [7] presents an online trajectory
generator for catching a flying ball in mid-air. A 5th order
polynomial is used to describe all possible target trajectories
in the neighbourhood of the catching point. The parameters
of the trajectory are optimized depending on the dynamics
and the kinematics of the manipulator and the object. A
final trajectory is then generated such that the end-effector
can catch the target at one point, and a match between the
position, velocity, and acceleration of the target and the end-
effector is satisfied.

Motion planning in visual servoing can be found in [8].
In this, visibility and workspace constraints are considered
while minimizing a cost function (e.g., spanned image area,
trajectory length). As trajectories are designed in image
space, only a (image) path is designed.

A complete framework for generating trajectories online
is presented in the work of Kröger [9], [10]. Particularly
motion systems subject to unforeseen events benefit from
this approach by being able to directly react to events and
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switch between different control methods or domains. As
such, this is a hybrid switched systems approach to robotic
manipulation and is motivated to generate motion with
arbitrary initial conditions. Experiments present a trajectory
generation in which the final conditions can be specified up
to and including velocity (i.e., 3rd order) and the acceleration
is set to zero.

Our approach does not consider switching between differ-
ent control methods but considers changes of the trajectory
itself. In particular, this entails changes due to obstacle
avoidance and therefore adaptation of intermediate and final
conditions (i.e., position, velocity and acceleration on via-
point and end-point). This means that every iteration, a new
trajectory is designed with different conditions. As such,
visual measurements can be incorporated in a constrained
manner.

The problem of reaching a given constraint is solved online
by a computationally efficient optimization procedure that it-
erates to a required motion bound (e.g. velocity, acceleration)
by extending the execution time. This guarantee effectively
makes the generated trajectory time-optimal. Finally, syn-
chronization between constraints as well as synchronization
between DOFs is considered prior to motion generation.

The remainder of this paper is organized as follows. Sec-
tion II recalls traditional trajectory planning with a minimum
jerk polynomial. Section III discusses the proposed direct tra-
jectory generation method and its use for obstacle avoidance.
Finally, section IV presents simulation and experimental
results.

II. TRADITIONAL MOTION GENERATION

Traditional motion generation can be divided in two
categories: offline motion planning and sensor-based motion
planning (e.g., visual servoing). Commonly, sensor-based
motion planning designs a path, whereas offline motion
planning designs a trajectory. The difference between path
planning and trajectory planning is that a path only takes
geometric considerations into account. A trajectory includes
time and can therefore specify kinematic constraints. Fol-
lowing, both methods are explained and compared in more
detail.

A. Vision-based vs. Offline Motion Planning

In offline motion planning, a trajectory is designed before
any motion is executed. This trajectory cannot be changed at
runtime, however, constraints on the trajectory can be easily
considered. A common procedure is to execute multiple
trajectories successively, where subsequent trajectories can
account for changes in conditions or constraints. This implies
that, while executing motion, the system is blind to any
changes.

Sensor-based motion planning considers the motion of a
system to be dependent on the sensor at hand, which means
that the motion is directly modified based on the sensor
readings. The design of this motion is usually highly sim-
plified, as incorporation of sudden events is fairly complex
or too time-consuming. In particular, in vision-based control,

common procedure is to use an image error e as feedback
to control the velocity vm of a manipulator:

vm = L†
eė, and ė = −λe, (1)

where L†
e is the pseudo-inverse of the interaction matrix [11]

and λ > 0 serves as a gain. This exponential error decrease
can lead to non-smooth or undesirable robot motion. The
initial error (step at t = 0) is discontinuous and kinematic
constraints on the trajectory are not included. Furthermore,
missing or delayed measurements have to be dealt with by
e.g. an observer, otherwise instability of the system may
occur.

An additional difference between both traditional methods
is their execution time. Traditional offline motion plan-
ning defines a single control structure known as trajectory
tracking, which can be executed at a high rate (e.g., 1
[kHz]). On the other hand, sensor-based control requires
more processing time to compute a motion command (e.g.,
force or visual control). This gives rise to a local control loop
that guarantees stability and a global loop that computes the
path.

Closer inspection suggests that if both approaches could
be adapted into one, the advantages of both could account for
an improved motion design. This approach fits perfectly in
a motion control scheme where direct reactions to sensor
readings are eminent. More specifically, we propose an
approach of direct trajectory generation as solution to the
obstacle avoidance problem. Where path planning would
direct an avoidance procedure merely on path planning
level, our direct trajectory generation method considers the
avoidance procedure on trajectory planning level and, as
such, can consider motion constraints directly.

B. Minimum Jerk Trajectories

For simple trapezoidal trajectories, discontinuities occur
during transition from constant to zero acceleration and
during velocity reversal. This discontinuous acceleration will
cause infinite jerk, which in turn tends to cause overshoot,
electric noise in the power source and unwanted vibrations
[12]. Furthermore, the larger the magnitude of the jerk is,
the larger the variation of acceleration is. Smooth motion
can therefore be obtained by choosing the trajectory as a 5th

order polynomial. This implies that its 6th derivative is zero,
which will minimize the integrated square jerk [13]:

fJmin
(t) =

∫ T

t=0

...
q 2(t)dt =

∫ T

t=0

[
d3q(t)

dt3

]2
dt. (2)

This trajectory has the form:

q(t) = a1 + a2t+ a3t
2 + a4t

3 + a5t
4 + a6t

5 (3)

for 0 ≤ t ≤ T . The velocity and acceleration can be written
as

q̇(t) = a2 + 2a3t+ 3a4t
2 + 4a5t

3 + 5a6t
4,

q̈(t) = 2a3 + 6a4t+ 12a5t
2 + 20a6t

3. (4)

By setting up a system of linear equations a Vandermonde
[4] matrix T can be formulated. This effectively performs
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a polynomial interpolation, since solving the system of
linear equations Ta = q for a is equivalent to finding the
coefficients of the polynomial.

A 5th order polynomial implies that T becomes 6×6. With
the points (tk, qk), k ∈ {i, f} and considering additional
constraints regarding initial (i) and final (f ) velocities and
accelerations, we can build the vectors q, a, and matrix T
of order n + m (i.e. n + 1 = 2 points, m = 4 additional
constraints) as:

q =
[
qi qf vi αi vf αf

]T
= Ta =

1 ti t2i t3i t4i t5i
1 tf t2f t3f t4f t5f
0 1 2ti 3t2i 4t3i 5t4i
0 0 2 6ti 12t2i 20t3i
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f




a0
a1
a2
a3
a4
a5

 . (5)

The coefficients can then be recovered with a = T†q, where
T† is the pseudo-inverse of T. Aforementioned method
generates a minimum jerk trajectory for one degree of
freedom. For multiple degrees of freedom, an equal number
of trajectories has to be generated.

C. Trajectory Synchronization

Incorporating kinematic constraints into basic motion pro-
files is fairly straightforward. The duration (i.e., execution
time) of the trajectory scales linearly (velocity) or square-
root linearly (acceleration) with the affected constraint [4]:

ts,l =

15

8

h

vmax
,

√
10
√

3

3

h

αmax

 (6)

where ts,l, l ∈ {v, α} is the execution time, h = qf − qi and
vmax and αmax are the maximum velocity and acceleration
respectively. The constraint that is most critical is then
chosen as the execution time. Considering multi-dimensional
trajectories, it is highly unlikely that all motion is finalized
at the same time instant. The standard approach is then to
evaluate all constraints over all degrees of freedom and select
the time that is most critical.

III. DIRECT TRAJECTORY GENERATION FOR OBSTACLE
AVOIDANCE

Incorporating obstacle avoidance into a trajectory planner
implies that constraints can be directly taken into account. In
order to show the flexibility of the proposed approach, sev-
eral methods for avoidance are presented, namely, obstacle
avoidance for point-to-point motion and multi-point motion.

A. Direct Trajectory Generation

Direct motion planning requires that the order of the
trajectory (Cn) and the global constraints have to be de-
fined on beforehand. An outline of the proposed trajectory
generation method is shown in pseudo-code in Algorithm 1.
When an obstacle blocks the original end-point, a new end-
point position qs is computed (from vision) for avoidance.
The proposed algorithm allows for event-based or rate-based

obstacle avoidance (see Algorithm 1: line 1). For event-based
avoidance, a trajectory update is incorporated only when
an event occurs. In rate-based avoidance, the trajectory is
updated continuously enabling even small disturbances to be
incorporated. One downside on the latter approach is that
noise can affect the generation quite significantly.

Algorithm 1 Direct Trajectory Generation (DTG)
Input: Cn,q, qs {initial conditions}
Output: S(k + 1) {next step state}

1: if qs > 0 || mod (i, 10) = 0 then {event or rate-based}
2: compute tev , teα {see algorithm 2}
3: qi = q(k − 1) {update q,T, tf}

qf = qs
vi = v(k − 1)
αi = α(k − 1)
tf = ts + te −∆t {see (9)}
a = T†q
S(k + 1) = [qk+1, q̇k+1, q̈k+1]T {see (3) and (4)}

4: end if

B. Obstacle Detection

For obstacle detection the ’SURF’ [14] feature detec-
tor is employed. Greyscale images of planar obstacles are
preloaded in memory of the pc and searched for con-
tinuously. Subsequent processing involves a homography
estimation and decomposition [15] to obtain a Cartesian
position (rotation is not considered for avoidance). As only
a scaled translation can be recovered from the homography
decomposition, a large margin is taken to avoid the obstacle.

C. Point-to-Point vs. Multi-point

When designing a trajectory with two points, the final
point is the only variable that can be altered to avoid
obstacles. This implies that after the trajectory moves away
from an obstacle, still a new goal position has to be employed
to move to a final end-goal.

If the trajectory is designed with multiple points, more
design choices become available. For instance, via-points
can be used to manoeuvre around (multiple) obstacles where
each via-point accounts for one obstacle. The final point
then does not necessarily need to be adapted as via-points
take care of avoidance. Furthermore, the constraints on the
via-point(s) can be limited to only position, as a continuous
C2 trajectory is already guaranteed. Moreover, this choice is
preferable, since in higher order trajectories, the behaviour
becomes more oscillatory (i.e., Runge’s phenomenon). With
the addition of n via-points, the degree of the trajectory
will grow with either 1n, 2n or 3n degrees depending
on the number of constraints. Unfortunately, if a via-point
increases the order of the polynomial trajectory, a minimum-
jerk trajectory is no longer guaranteed.

D. Constraint Optimization

When considering that a new trajectory can be gener-
ated at any arbitrary state, a relation between time and
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constraints is difficult to obtain. A straightforward solution
is to optimize these constraints online. This implies that,
every iteration, the constraints are evaluated and if, due to a
redesign of the trajectory, these would be violated, additional
time is added to the trajectory. The location of a current
constraint (maximum or minimum) is found by computing
the zero-crossings of the derivative (roots) of the considered
polynomial and its magnitude by evaluating the original
polynomial at these roots. A steepest descent optimization
routine [16] is sufficient to accommodate for an eventual
constraint mismatch and does not need to be executed in
one iteration. For a velocity and acceleration constraint this
is respectively expressed as

tev = dv(|vm| − vmax), (7)
teα = dα(|αm| − αmax),

in which dv > 0 and dα > 0 define the rate of convergence,
vmax and αmax denote the predefined constraints, and vm
and αm the computed constraint (maximum or minimum) of
the current trajectory.

As the optimization converges quite rapidly, the computa-
tions can be spread out over several iterations. Algorithm
2 presents more details of the optimization procedure in
pseudo-code for point-to-point motion. For multi-point tra-
jectories, the root solving problem becomes higher order,
however, the solution method remains the same.

Algorithm 2 Constraint Optimization
Input: T (a), vmax, αmax {trajectory and constraints}
Output: tev || teα {extra time to satisfy constraint}

1: Tvc = 2a3+6a4t+12a5t
2+20a6t

3 {velocity constraint}
2: Tαc = 6a4 + 24a5t+ 60a6t

2 {acceleration constraint}
3: if Tvc then
4: Tvc = 0 {find roots and sort descending in r}
5: tm = r(2) {time of maximum}
6: vm = a2 + 2a3tm + 3a4t

2
m + 4a5t

3
m + 5a6t

4
m

7: if vm > vmax then
8: tev = dv(|vm| − vmax) {steepest descent}
9: end if

10: end if
11: if Tαc then
12: Tαc = 0 {find roots and sort descending in r}
13: tm = arg max{Tαc = 0} {time of maximum}
14: αm = 2a3 + 6a4tm + 12a5t

2
m + 20a6t

3
m

15: if αm > αmax then
16: teα = dα(|αm| − αmax) {steepest descent}
17: end if
18: end if

The additional time needed to avoid violating a constraint
is added to the original trajectory time. The fact that every
iteration a new trajectory is generated implies that the
trajectory time is continuously decreasing (except when tev
or teα are added) and is equal to zero at the end of the
trajectory. More specifically, at t = 0 and t = tf it holds
that

t(0) = tf , and t(tf ) = 0. (8)

When computing the trajectory online, the initial and final
time is defined as

ti = 0, and tf = ts + te −∆t (9)

where ts is obtained from (6) and te is obtained from (7). ∆t
is the ascending trajectory time approximated as ∆t = Tlj,
with Tl the local loop time with iteration count j.

For a multi-dimensional trajectory, synchronization entails
that the final time tf of all trajectories is equal. The via-point
time is obtained similarly to the final time defined in (9).
When a trajectory is altered during runtime and additional
time te is added, this is passed on to all other trajectories.
A possible constraint violation due to this addition is dealt
with by the constraint optimization procedure.

Typical for vision-based control systems is the separation
of a visual loop with cycle time Tv and a local control
loop with cycle time Tl, where Tv > Tl. As every cycle
a new trajectory is generated, the real-time requirement of
the visual loop is now no longer necessary.

IV. EXPERIMENTAL RESULTS

In order to show that the method can generate from
an arbitrary state the desired motion profiles as explained
in section III, first results are shown for a single DOF.
Following, results are presented with a 7-DOF redundant
manipulator, where motion is designed in Cartesian space.

A. Experimental Results for a Single DOF

Direct trajectory generation for a single DOF is shown in
Fig. 1, for constraint optimization of acceleration. The end-
point of the trajectory is changed at t = 1.2 [sec]. It can be
seen that the bound of |αmax| = 1 [m/s2] is not exceeded.
Closer inspection of tf shows that directly after the change
in conditions, the execution time is increased to comply with
the initially imposed bounds. In this case (for clarity), it is
chosen to optimize to the new constraints in several iterations
(one optimization step per iteration). However, due to limited
number of steps necessary for convergence, it is also possible
for the optimization to converge within one iteration.

0 1 1.2 2
−1

0

1

time [sec]

Direct Trajectory Generation (acceleration optimized)

 

 

q [m]

q̇ [m/s]

q̈ [m/s2]

xf [m]

tf [sec]

At t = 1.2 [sec] the end−point is

changed from

x
f
 = 0.5 to x

f
 = 0.8

Fig. 1. Direct trajectory generation with online end-point change. In order
to comply with desired constraints (|αmax| = 1 [m/s2]), the end-time of
the trajectory tf is iteratively increased directly after t = 1.2 [sec]. Note
that the acceleration profile is continuous.
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B. Manipulator Kinematics: AMOR Arm

The selected robotic manipulator is the AMOR1 anthro-
pomorphic arm from Exact Dynamics, B.V.2 (see Fig. 2, and
[17] ), which has 7-DOF and a gripper on its end-effector. All
the matrices required for the implementation of the inverse
kinematics algorithm are developed in C/C++. For visual
processing, an industrial camera (Prosilica GE680M) takes
greyscale images which are processed using the computer
vision library Opencv [18]. The output of the obstacle
detection algorithm using SURF is shown in Fig. 3.

C. Results for Point-to-Point Whole-Arm Movements

In order to assess the obstacle avoidance method, a sce-
nario is developed in which a robotic manipulator should
execute a predefined planar positioning task, and is blocked
by an obstacle at certain time and location. This means that
from any arbitrary state, the manipulator should be guided
to a new (online updated) end-point, while maintaining
certain kinematic constraints. Fig. 4 and Fig. 5 show the
simulation and experimental results for this scenario. New
end-conditions are computed when the obstacle is detected
and constraints are not violated.

D. Results for Multi-Point Whole-Arm Movements

A similar scenario is developed to generate the motion for
obstacle avoidance with a multi-point trajectory containing 3
points (one via-point is added with only a position constraint,
thus still ensuring C2 continuity). This allows controlling
more parameters of the trajectory compared to point-to-point
motion. The via-point and end-point are both determined to
avoid the obstacle. Fig. 6 and Fig. 7 show the simulation
and experimental results of this scenario. Once more, newi
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Fig. 2. Redundant 7-DOF AMOR robotic manipulator.

Fig. 3. Output of obstacle detection using SURF feature detector. The
detected object is outlined with a white rectangle.

1 http://www.amorrobot.com 2 http://www.exactdynamics.com
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Fig. 4. Simulation for direct, online obstacle avoidance with a 5th

degree polynomial (2 points, 3 constraints each). The object is smoothly
avoided when detected (at t = 0.3 [sec]) with velocity constraint vmax =
0.5 [m/s].
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degree polynomial (2 points, 3 constraints each). The object is smoothly
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end-conditions are computed when the obstacle is detected
and constraints are not violated. As the constraint is reached,
time-optimality is guaranteed.

One issue that remains when designing a multi-point
trajectory is the fact that, due to the addition of a via-point,
the trajectory is now a 6th degree polynomial, which no
longer implies a minimum-jerk trajectory.

V. CONCLUSIONS

In this work, a method for direct and online trajectory
generation is proposed in which constraints on via- and end-
points can be taken into account at runtime. The method is
suitable for point-to-point and multi-point trajectory genera-
tion, where arbitrary start- and end-states can be defined. In
order to comply with predefined constraints, an optimization
scheme ensures that the constraint is always reached when
desired (but not violated), thus ensuring the time-optimality
of the trajectory. Simulations and experiments on a 7-
DOF manipulator show the effectiveness of the approach by
avoiding obstacles smoothly and directly when detected.
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ẏ [m/s]

= v
max

Fig. 6. Simulation for direct, online obstacle avoidance with a 6th degree
polynomial (3 points, 3 constraints on extremal points, only position on via-
point). The object is smoothly avoided when detected (at t = 0.35 [sec])
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Abstract—In this paper, we provide an extension to our
previous approach [1] to perform obstacle avoidance in the
presence of multiple fast moving and rotating obstacles. Our
approach leverage on the notion of DS to generate robot motions
that are inherently robust to perturbations and can instantly
adapt to changes in the target and obstacles’ positions in a
dynamically moving environments. We validate our method in
the challenging experiment of dodging a fast moving and rotating
box on the 7-degrees of freedom (DoF) KUKA DLR arm.

I. INTRODUCTION

Classical approaches to modeling robot motions rely on
decomposing a task execution into two separate processes:
planning and control [2]. The former is used as a means to
generate a feasible path that can satisfy the task’s require-
ments, and the latter is designed so that it follows the generated
feasible path as closely as possible. These approaches consider
any deviation from the desired path (due to perturbations or
changes in environment) as the tracking error, and various con-
trol theories have been developed to efficiently suppress this
error in terms of some objective functions. Despite the great
success of these approaches in providing powerful robotic
systems, particularly in factories, they are ill-suited for robotic
systems that are aimed to work in the close vicinity of humans,
and thus alternative techniques must be sought.

In robotics, DS-based approaches to motion generation
have been proven to be interesting alternatives to classical
methods as they offer a natural means to integrate planing
and control into one single unit [3], [4], [5], [6], [7]. For
instance when modeling robot reaching motions with DS, all
possible solutions to reach the target are embedded into one
single model. Such a model represents a global map which
specifies instantly the correct direction for reaching the target,
considering the current state of the robot, the target, and all
the other objects in the robot’s working space. Clearly such
models are more similar to human movements in that they can
effortlessly adapt its motion to change in environments rather
than stubbornly following the previous path. In other words,
the main advantage of using DS-based formulation can be
summarized as: “Modeling movements with DS allows having
robotic systems that have inherent adaptivity to changes in a
dynamic environment, and that can instantly adopt a new path
to reach the target". This advantage is particularly important in
situations where there is no time to plan (or re-plan), no matter
how fast the planning technique may be, and instant adaptation
to a dynamically changing environment is required.

Despite the above features, most of the DS-based ap-
proaches to generating robot motions relies on a simplistic
assumption that presume there is no object in the robot
working space [3], [4], [7], [8]. Such assumption could be very
limiting since many real world tasks require robotic systems
that should work in cluttered environments where the robot
may face several objects, which may appear suddenly during
the task execution. Hence, it is essential to endow the existing
DS-based control policy with the ability to avoid obstacles. In
the face of fast moving obstacles, the devised algorithm should
be computationally light so that can be used in closed-loop.

In our previous work, we have presented a novel approach
to perform realtime obstacle avoidance based on dynami-
cal systems that ensures impenetrability of multiple convex
objects in quasi-static conditions [1]. This approach has a
level of reactivity similar to existing local obstacle avoidance
methods, while it ensures convergence to the target proper to
global obstacle avoidance techniques1. In this paper, we extend
this work for realtime obstacle avoidance in the presence of
multiple fast moving and rotating objects, where the quasi-
static assumption no longer holds. The presented method is
free from local minima, and can ensure convergence of all
trajectories to the target (as long as the target is reachable).
We validate our method on the 7-DoF KUKA DLR arm in
the experiment of dodging a fast moving and rotating box
in 20 trials with various linear and angular velocities. Next
we provide a recap of our previous work, and then present
the extension for obstacle avoidance in the presence of fast
moving objects.

II. DS-BASED OBSTACLE AVOIDANCE

In this section we provide a brief overview of our DS-based
approach for obstacle avoidance that is presented in [1]. This
work assumes that the robot motion is driven by a continuous
and differentiable DS in the absence of obstacle(s):

ξ̇ = f(ξ), f : Rd 7→ Rd autonomous DS (1)

ξ̇ = f(t, ξ), f : R+ × Rd 7→ Rd non-auto. DS (2)

where ξ ∈ Rd is a state variable that defines the state of
the robot, t corresponds to time, and f(.) could be either an
autonomous or non-autonomous DS. For simplicity, we further

1Please refer to [1] for more discussion on differences between this work
and relevant state-of-the-art obstacle avoidance algorithms.
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use the notation f(.) to refer to both autonomous and non-
autonomous DS. Given an initial point {ξ}0, the robot motion
along time can be computed by integrating f(.) recursively.

In this paper we take an imitation learning approach
to construct f(.). Given a set of N demonstrations
{ξt,n, ξ̇t,n}T

n,N
t=0,n=1, an estimate of f(.) can be built using

different techniques such as Stable Estimator of Dynamical
Systems (SEDS) [3]. Note that throughout this paper we
assume the DS f(.) is provided by the user, and henceforth
we will call it the original DS. Next we describe our DS-based
obstacle avoidance.

A. Analytical description of obstacles

Consider a d-dimensional object centered at a reference
point ξo. We denote the position of a point ξ ∈ Rd with respect
to the frame of reference centered at ξo with ξ̃ = ξ − ξo.
Suppose a continuous function Γ(ξ̃) that projects Rd into R.
The function Γ(ξ̃) has continuous first order partial derivatives
(i.e. C1 smoothness) and increases monotonically with ∥ξ̃∥.
The level curves of Γ (i.e. Γ(ξ̃) = c, ∀c ∈ R+) enclose a
convex region. By construction, the following relation holds
at the surface of the obstacle:

Γ(ξ̃) = 1 (3)

For example Γ(ξ̃) :
∑d

i=1(ξ̃i/ai)
2 = 1 corresponds to a

d-dimensional ellipsoid with axis lengths ai. We can divide
the space spanned by Γ into three regions X o, X b, and X f to
distinguish between points inside the obstacle, at its boundary,
and outside the obstacle respectively:

Interior points : X o = {ξ ∈ Rd : Γ(ξ̃) < 1} (4)

Boundary points : X b = {ξ ∈ Rd : Γ(ξ̃) = 1} (5)

Free region : X f = {ξ ∈ Rd : Γ(ξ̃) > 1} (6)

Note that in case of non-convex objects, we could consider
a smooth convex envelope (also known as convex bounding
volume) that fits tightly around the object. When the point
cloud description of an object is available, one could also use
one of the estimation techniques such as the one presented in
[9] to approximate a C1 smoothness bounding volume around
the object.

B. Modulation

Given the original DS and an analytical formulation de-
scribing the surface of K obstacles Γ1(ξo,1) · · ·ΓK(ξo,K),
we would like to determine a combined dynamic modulation
matrix M̄ so as to instantly modify the robot motion to avoid
collision with multiple static obstacles:

ξ̇ = M̄(ξ)f(.) (7)

Algorithm 1 provides the procedure on how to determine
M̄ . For brevity of this paper, we do not describe here the
effect of each line in Algorithm 1 on the combined dynamic
modulation matrix, and refer interested readers to [1]. How-
ever, there are three parameters that are noteworthy: the safety
factors ηk, the reactivities ρk, and the tail effects κk.

ξ1

ξ
2

η1 = η2 = 1.5

ρ = 1, κ= 1

(a) Safety factor

ξ1

ξ
2

η1 = η2 = 1.5

ρ = 3, κ= 1

(b) Reactivity

ξ1

ξ
2

η1 = η2 = 1.5

ρ = 3, κ= 0

(c) Tail effect

Fig. 1: Illustration of the effect of the safety factor, reactivity, and the tail
effect on the modulation. In these graphs, the original dynamics is a uniform
flow moving from left to right: ξ̇ = [1; 0]. (a) The area between the dashed
line and the obstacle boundary is the safety margin. (b) By increasing the
reactivity to 3, the trajectories now deflect earlier in time and go further out.
(c) By setting κ = 0, We could remedy the tendency of the trajectories
to follow the obstacle shape after passing it. Note that in this situation, the
slight modulation of the trajectories after passing the obstacle is still required
in order to ensure the continuity in the velocity.

For each obstacle k ∈ 1..K, the safety factor ηk ∈ Rd with
ηk
i ≥ 1, ∀i ∈ 1..d, controls the required safety margin around

the object by virtually inflating the object along each direction
ξ̃i with the magnitude ηk

i (in the obstacle frame of reference).
The reactivity parameter ρk > 0 controls the responsiveness
of the robot to the presence of each obstacle. The larger the
reactivity, the earlier the robot responds to the presence of an
obstacle. This parameter is very crucial for practical purposes
as one may prefer to deflect the robot trajectory earlier when
it goes toward a fire flame than when it is just heading towards
a soft pillow. The last parameter κ ∈ {0, 1} controls whether
the robot motion should still be modified after passing the
object (κ = 1 corresponds to this situation). Figure 1 shows
the effect of these three factors on the modulation.

Note that the multiplication of the combined dynamic
modulation matrix guarantees the impenetrability of all the
K obstacles. However in many robot experiments, not only
should the robot avoid the obstacle, but it should also reach
a target. In other words, we would like the modified motion
to preserve the convergence property of the original dynamics
while still ensuring that the motion does not collide with the
object(s). As described in [1], the multiplication of M̄ does
not change the critical points of the original dynamics. Hence,
if the original DS is globally stable (i.e. all trajectories reach
the target point) when there is no obstacle in the robot working
space, it also remains stable in the presence of obstacles2.

III. EXTENSION TO MULTIPLE MOVING OBSTACLES

In our previous work [1] we have considered situations
where obstacles are static. In this section we extend our
previous formulation to perform obstacle avoidance in the
presence of multiple moving obstacles with linear and/or
rotational velocities. In the presence of one single obstacle,
this extension is straight forward and can be achieved by

2It should be noted that the modulation term M(ξ̃) may also create other
possible equilibrium points at the boundary of obstacles. As these possible
equilibrium points solely appear on the obstacles’ boundary, they can be
tackled by using a contouring mechanism.
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Algorithm 1 DS-Based obstacle avoidance as described in [1]

Input: ξ, f(.), and {ηk, ρk, κk}
1: for each obstacle k, k ∈ 1..K do
2: ξ̃k

η = (ξ − ξo,k)./ηk

3: Ek(ξ̃k
η) =

[
nk(ξ̃k

η) e1,k(ξ̃k
η) · · · ed−1,k(ξ̃k

η)
]

4: ωk(ξ̃k
η) =

1 if K = 1∏K
i=1,i ̸=k

(Γi(ξ̃k
η)−1)

(Γk(ξ̃k
η)−1)+(Γi(ξ̃k

η)−1)
otherwise

5:


λk
1(ξ̃

k
η) =

1− ωk(ξ̃k
η)

|Γ(ξ̃k
η)|

1
ρ

n(ξ̃)T ξ̇ < 0 or κ = 1

1 n(ξ̃)T ξ̇ ≥ 0 and κ = 0

λk
i (ξ̃

k
η) = 1 +

ωk(ξ̃k
η)

|Γ(ξ̃k
η)|

1
ρ

2 ≤ i ≤ d

6: D(ξ̃k
η) =

 λk
1(ξ̃

k
η) 0

. . .
0 λk

d(ξ̃
k
η)


7: Mk(ξ̃k

η) = Ek(ξ̃k
η)D

k(ξ̃k
η)

(
Ek(ξ̃k

η)
)−1

8: end for
9: M̄(ξ) =

∏K
k=1 M

k(ξ̃k
η)

Output: ξ̇ = M̄(ξ)f(.)

computing the modulation in the obstacle’s frame of reference.
Suppose an obstacle Γ(ξ̃) that is moving with linear and
rotational velocities ξ̇oL and ξ̇oR, respectively. The modulated
dynamics for obstacle avoidance becomes:

ξ̇ = M̄(ξ̃)
(
f(.)− ξ̇oL − ξ̇oR × ξ̃

)
+ ξ̇oL + ξ̇oR × ξ̃ (8)

where (.) × (.) denotes the cross product and M̄(ξ̃) is the
modulation given by Algorithm 1. In this equation, the term
f(.) − ξ̇oL − ξ̇oR × ξ̃ transforms the velocity of the robot to
the obstacle’s coordinates system. Then, the modulation is
performed in this coordinates system where the object is static,
yet the robot is moving with a different speed. After applying
the modulation, the result is transformed back to the world’s
frame of reference through the last term.

Equation (8) ensures impenetrability of a single moving ob-
stacle. To verify this, suppose a point ξb on the boundary of the
moving obstacle at time t. After multiplying the modulation
matrix, the radial velocity of the robot is canceled, and hence
the robot can only move along the tangential hyperplane at
ξb. However, this is still not enough as the robot may hit the
obstacle in the next moment t+ since the obstacle is moving.
The collision can be avoided by adding the instant velocity
of the point ξb due to obstacle motion, which is given by
ξ̇oL + ξ̇oR × (ξb − ξo), to the modulated velocity.

As a side effect, Eq. (8) could induce some unnecessary
movements to the robot even when the robot is far from the
obstacle (note that the angular velocity grows proportionally
with ∥ξ̃∥). This can be tackled by adding an exponential term
that diminishes the induced velocity due to the obstacle’s
movement as ∥ξ̃∥ increases:

ξ̇ = M(ξ̃)
(
f(.)− e−

1
σo (Γ(ξ̃)−1)

(
ξ̇oL + ξ̇oR × ξ̃

))
+ · · ·

+ e−
1
σo (Γ(ξ̃)−1)

(
ξ̇oL + ξ̇oR × ξ̃

)
(9)

where σo is a positive scalar controlling the rate of decay
of the exponential term. The higher the σo, the earlier the
robot responds to the obstacle motion. The above change does
not compromise impenetrability of the obstacle as we have
e−

1
σo (Γ(ξ̃)−1) = 1 on the boundary of the obstacle.
In the presence of multiple moving obstacles, further con-

siderations should be taken so that the above transformation
smoothly shift from one obstacle to another based on the
current position of the robot. To achieve this goal, we use
the weighting coefficients that are computed in the 4th line of
Algorithm 1 to control the priorities of obstacles.

Let us consider K disconnected obstacles that are described
by Γk(ξ̃k), k ∈ 1..K, with associated translational and
rotational velocities ξ̇o,kL and ξ̇o,kR , respectively. We define the
net shift in velocity due to the presence of these obstacles as:

¯̇
ξo =

K∑
k=1

ξ̇o,k =

K∑
k=1

e−
1

σo,k (Γk(ξ̃k)−1)ωk(ξ̃k)
(
ξ̇o,kL +ξ̇o,kR ×ξ̃

k
)

(10)
where ωk(ξ̃k) are computed according to Algorithm 1. In case
the tail effect is not desired (i.e. κ = 0), one could remove the
modulation effect by setting ξ̇o,k = 0 for each obstacle that is
moving away from the robot (i.e. when

(
ξ̇o,k

)T
ξ̃o,k < 0).

The combined modulation that considers the net effect of
all moving/static obstacles is then given by:

ξ̇ = M̄(ξ)
(
f(.)− ¯̇

ξo
)
+

¯̇
ξo (11)

where M̄(ξ) is given by Algorithm 1. Equation (11) ensures
the impenetrability of all the K obstacles. For a point ξb on the
boundary of the k-th obstacle, only ωk = 1 and all the other
weighting coefficients are zeros. Hence M̄(ξb) = Mk(ξb)

and ¯̇
ξo = ξ̇o,kL + ξ̇o,kR × ξ̃b,k, and thus the obstacle is

impenetrable. Similarly to the static case, by moving from
one obstacle to another, the weighting coefficients smoothly
change between zero and one, and by this, impenetrability is
always ensured for all the obstacles.

Figure 2 shows an example of obstacle avoidance in the
presence of two moving obstacles. It compares two situations:
1) The quasi-static case where the obstacles’ motion are
neglected, and the modulation is computed at each time based
on the instantaneous position and orientation of the obstacles
(see Fig. 2a), and 2) The dynamic case where the obstacles’
motion are taken into account (see Fig. 2b). As we can see,
in the quasi-static case the impenetrability of the obstacles
are no longer ensured, whereas in the dynamic case all the
trajectories can safely pass the obstacles.

IV. ROBOT EXPERIMENTS

In this section we evaluate our approach in the presence of a
fast moving obstacle, where the quasi static-assumption is no
longer valid. The experiment consisted of having the 7-DoF
KUKA DLR arm stay in a default target position while a box
is slid towards the robot at high speed. Thus the robot should
react quickly and change its position so that the box passes
without any collision (see Fig. 3).
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(a) Without considering the obstacles’ motion (the quasi-static case). The
dashed black lines show the failure cases where the robot actually collides
with the obstacles.
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(b) With considering the obstacles’ motion. In this case, collision avoidance
for all trajectories is ensured.

Fig. 2: Illustration of the obstacle avoidance in the presence of two moving
obstacles. As we can see, solely in the dynamic case, where the obstacles’
motion is considered, the trajectories can safely pass the obstacles. In this
example, the trajectories move from left to right with ξ̇ = [2; 0] m/s. The
oval-shaped object has the linear velocity ξ̇o,1L = [−0.4;−0.2] m/s and the
rotational velocity ξ̇o,1R = −2 rad/s. These values for the square-shaped
obstacle are [−0.4;−0.2] m/s and 1 rad/sec. Both objects have the safety
factor of η = 1.2. The variance σo is set to 2 and 10 for the oval and
square-shaped obstacles, respectively.

The KUKA robot is controlled in the Cartesian coordinate
system, and the control commands are sent at 1000Hz. We use
the damped least square pseudo-inverse kinematics to compute
the robot’s joint angles. The torque command to the robot is
computed based on the desired kinematic command using the
KUKA built-in PID controller. The original DS, deriving the
robot motion in the absence of obstacles, is modeled using
the Stable Estimator of Dynamical Systems (SEDS) [3]. SEDS
builds an estimate of a globally asymptotically stable DS from
a set of demonstrations (in the absence of obstacles) provided
by the user. This DS is then used to control the robot motion by
generating velocity commands to keep the robot’s end-effector
close or, when it is feasible, at the target point.

We define the box reference point at xo,B = xc,B , yo,B =
yc,B , and zo,B = 0, and model it with the analytical formu-
lation Γ(ξ̃)B : ((x − xo,B)/0.055)2 + ((y − yo,B)/0.165)2 +
((z − zo,B)/0.23)4 = 1. Other parameters are set as follows:
η = [3.5 2.0 1.5]T , ρ = 2, σ = 30, and κ = 0. The
box’s position and orientation are tracked at 240Hz using an
OptiTrack vision system. We use a Kalman filter to reduce
the noise effect on estimations. The working table is modeled
with xo,T = yo,T = 0, zo,T = −0.01cm and Γ(ξ̃)T :
((x− xo,T )/3)6 + ((y− yo,T )/3)6 + ((z − zo,T )/0.01)4 = 1.
We set the safety factor of the table to η = 1.3. The position
of the table is set fixed in the whole experiment.

In total we ran 20 trials, lasting between 0.8 to 1.3 seconds,
in which the box was slid from different initial configurations
with various linear and angular velocities. In each trial, the
box was set to an initial distance of about 0.5 meter away

from the robot and was thrusted so as to reach a maximum
linear velocity of 0.6 ∼ 1.5 m/s and/or a maximum angular
velocity of 40 ∼ 120 deg/s. In 16 out of the 20 trials, the
robot successfully managed to dodge the box. Figure 3 shows
sequences of the motion for four of the trials. The trajectories
of the robot’s end-effector and the box, and the magnitude of
the box’s linear and angular velocities are also illustrated in
Fig. 4.

The four failure cases could possibly be due to two factors
that are not currently considered in our formulation: 1) The
filtering of the object’s position and orientation introduces a
lag in determining the current linear and angular velocities of
the box. In situations where the box is moving and rotating
fast at a very close distance to the robot, the presence of this
lag could yield collision with the obstacle. 2) The robot’s
joints cannot move faster than a certain value due to the
hardware limitation, and hence collision with the obstacle is
inevitable. Figure 5 shows the sequences of the motion for one
of the failure cases. In this trial, though the avoidance seems
successful at the initial stage of the motion, the box hit the
end-effector from the backside due to the wrong estimation of
the object’s angular velocity.

The first factor can be alleviated by using a more advanced
filter or by increasing the safety factor. However, the second
factor cannot be easily tackled. Some improvements might be
achieved by using a planner technique that could take into
account such hardware limitations during the path generation.
However, as in the above failure situations the obstacle is
moving fast at a very close distance to the robot, this planner
should be extremely fast to provide a valid solution within an
order of millisecond (recall the robot is controlled at 1000Hz).

V. SUMMARY AND CONCLUSION

In this paper, we have extended our previous approach to
perform obstacle avoidance in the presence of fast moving ob-
jects, where the quasi-static assumption no longer holds. The
proposed approach requires the user to provide a DS model
that governs the robot motion in the absence of obstacles and a
smooth analytical formulation describing a convex bounding
volume around each obstacle. Given the above information
as well as the realtime position and orientation of obstacles, it
instantly provides a modulation to the DS model of the motion
so as the robot does not collide with the obstacles.

We have validated the applicability of our method in a
real robot experiment where a fast moving and rotating box
was slid towards the robot at various speeds. In most trials,
the robot manages to successfully dodge the box despite
its fast motion at a very close distance. Due to high speed
motion of the box, the accuracy in estimating its position
and orientation play an important role for the safe collision
avoidance. In our implementation, there is an upper bound
for the maximum amount of inaccuracies that can be handled,
which is a function of the safety factor, reactivity parameter,
and the object’s velocity.

Our approach is currently limited in that it does not consider
the robot’s hardware limitations during the avoidance. The
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(1) t = 0 s (2) t = 0.23 s (3) t = 0.46 s

(4) t = 0.69 s (2) t = 0.92 s (3) t = 1.15 s

(a) First trial.

(1) t = 0 s (2) t = 0.23 s (3) t = 0.46 s

(4) t = 0.69 s (2) t = 1.09 s (3) t = 1.2 s

(b) Second trial.

(1) t = 0 s (2) t = 0.2 s (3) t = 0.46 s

(4) t = 0.8 s (2) t = 1.06 ms (3) t = 1.3 s

(c) Third trial.

(1) t = 0 s (2) t = 0.2 s (3) t = 0.36 s

(4) t = 0.53 s (2) t = 0.63 ms (3) t = 0.91 s

(d) Forth trial.

Fig. 3: Illustration of sequences of motion for 4 out of the 20 executed trials. In this experiment the robot was required to dodge a sliding box that was
launched 20 times from different initial configurations with various linear and angular velocities. For further information please refer to Section IV.
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(c) Third trial.
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(d) Forth trial.

Fig. 4: Illustration of trajectories of the robot’s end-effector and the box, and the magnitude of the box’s linear and angular velocities for the four trials
shown in Fig. 3. In these graphs, the x, y, and z axes of the box’s frame of reference are shown with red, green, and blue vectors, respectively. For further
information please refer to Section IV.

(1) t = 0 s (2) t = 0.2 s (3) t = 0.33 s

(4) t = 0.51 s (2) t = 0.82 s (3) t = 1.04 s

Collision

Fig. 5: Illustration of sequences of motion for one of the four cases in which the robot failed to successfully dodge the box.

DS modeling can compensate for deviations (due to hardware
limitations) from the desired trajectory, by instantly adapting
a new trajectory for the new position of the robot. However,
an inevitable outcome of such compensation is that the robot
executes the motion at a slowest pace than what is expected,
which may yield to collision.
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Online task space trajectory generation

Daniel Sidobre1 and Wuwei He2

Abstract— As the kinematic of the robots becomes complex
and the task to realize are more and more demanding, we
need tools to better define and manipulate the movements of
the robots. To cope with this problem, we propose a family
of trajectory, which we name the Soft Motion trajectories,
defined by polynomial functions of degree three. Based on these
trajectories we propose a set of tools to generate trajectories
and control the robots. We present some experimental results
showing the interest of the approach that unify the data
exchanged from the planning level to the control level of the
robot.

I. INTRODUCTION

As machines become more and more complex and precise,
they can not settle for following a path, they need better
defined moves to design and think motions. The concept of
trajectories that defines the position as a function of times
allows building more powerful tools to animate machines.
Some systems already use trajectories, but not in an inte-
grated way from planning to control. This paper focuses
on trajectories defined as series of segments of polynomial
function of degree three and proposes a set of tools to
generate and manipulate them.

The classical approach utilized by most of machines
consists in defining a path and expect that the system can
follow it. Unfortunately, many of these paths cannot be
followed efficiently and precisely. For instance some paths
are defined as polygonal lines that require the system stops at
each vertices or approximates the lines around the vertices.
It is well known that the path must be at least of class C2 to
be feasible. But this smoothness condition is practically not
sufficient as the maximal speed depends on the local radius
of curvature of the path.

The use of a trajectory to define a move gives all the
necessary elements to verify that the move is feasible.
Using a dynamic simulator, all the physical characteristic
of the move can be verified: collisions, maximum velocity,
maximum power, maximum torque etc.

From a control point of view, trajectories are also very
interesting because they allow simpler control strategies.
Torsten Kroeger showed the possibility to switch very easily
between different controller [1]. For robot interacting with
humans, trajectories allow to express easily the safety and

This work has been supported by the European Community’s Seventh
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287513 and by the French National Research Agency project ANR-07-
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comfort constraints as kinematic limits. Thanks to advances
in computers sciences, the trajectories can now be manipu-
lated very efficiently.

This paper is organized as follows. Trajectory generality
are presented in section II. A set of trajectory generators are
described in section III. The section IV details a method
to approximate trajectories with polynomial third degree
trajectories. A solution to generate trajectories from polygo-
nal lines is described in section V. A trajectory controller
is presented in the section VI. Experimental results are
presented in section VII. Finally we give some concluding
remarks in section VIII.

II. TRAJECTORIES

To clarify the subject, we first introduce trajectories and
give their main properties. Then, we detail the model of
trajectories based on series of cubic polynomial functions
and introduce different tools to manipulate them.

Trajectories are time functions defined in geometrical
spaces, like essentially Cartesian space and joint space. The
rotations can be described using different coordinates system:
quaternion, vector and angle etc. The books from Biagiotti
[2] on one hand and the one from Kroger [1] on the other
hand summarize background trajectory material.

Given a system whose position is defined by a set of
coordinate X if the coordinates are in Cartesian space or
Q if the coordinates are in joint space, a trajectory T is a
function of time defined as:

T : [tI , tF ] −→ Rn (1)
t 7−→ T (t) = X(t) (2)

The trajectory is defined from the time interval [tI , tF ] to
Rn where n is the dimension of the motion space. The T (t)
function can be a direct function of time or the composition
C(s(t)) of a function giving the path C(s) and a function
s(t) describing the time evolution along this path.

At first glance the latter offer more possibilities as the time
evolution is independent of the geometrical path and so the
two elements can be modified independently. Unfortunately,
this approach is limited by the difficulty to integrate the
derivative of the path to obtain the curvilinear abscissa.
Without this parameterization, the function s(t) doesn’t give
the tangential velocity and the kinematic of the motion is
difficult to manipulate and interpret. So, as the former has
a simpler expression, it provides simpler solutions to define
and manipulate trajectories.

A trajectory T (t) defined from tI to tF can be defined by
a series of trajectories defined between intermediate points.
Given, tu which satisfies tI < tu < tF , an equivalent
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Fig. 1. Jerk profile for a series of segments of cubic polynomial trajectory

representation of T (t) is defined by the series of two
trajectories T1 and T2 defined respectively by :

T1 : [tI , tu] −→ Rn T2 : [tu, tF ] −→ Rn

t 7−→ T1(t) = T (t) t 7−→ T2(t) = T (t) (3)

Similarly a trajectory can be defined by a series of sub-
trajectories if some continuity criteria specified for the tra-
jectory and its derivative are verified. Generally this criterion
is defined as a differentiability class Ck with k ≥ 2.

The possible choices to define trajectory functions are very
large, but as we intend to compute motions in real time, we
choose a simple solution like polynomial functions. As we
need C2 functions, we choose polynomial function of third
degree and name this trajectories Soft Motion trajectories.
Using a long series of polynomial function, trajectories
following very complex path can be defined. It is also
possible to approximate or interpolate a set of points to define
Soft Motions trajectories.

In the sequel, we firstly present Soft Motion trajectories
and then a set of consistent trajectory generator to solve
robotic problems.

Series of 3rd degree polynomial trajectories

We define Soft Motion trajectories as series of 3rd

degree polynomial trajectories. Such a trajectory is com-
posed of a vector of one-dimensional trajectories: T (t) =
(1Q(t), 2Q(t), · · · , nQ(t))T for joint motions or T (t) =
(1X(t), 2X(t), . . . , nX(t))T in Cartesian space. Without
loss of generality, we suppose that all jX(t) or all jQ(t),
0 ≤ j < n share the same time intervals and that tI = 0.
A one dimensioned trajectory jX(t) is defined by its initial
conditions (jX(0) = jXI , jV (0) = jVI and jA(0) = jAI )
and K elementary trajectories jXi(t) defined by the jerk jJi

and the duration Ti where 1 ≤ i ≤ K and
∑K

i=1 Ti = tF−tI .
By integration we can define the acceleration jA(t), the
velocity jV (t) and then the position jXi(t).

Assuming k ≤ K is such that
∑k−1

i=1 Ti ≤ t <
∑k

i=1 Ti,
the trajectory jX(t) and its derivative are defined by :

jJ(t) = jJk (4)

jA(t) = jJk

(
t−

k−1∑
i=1

Ti

)
+

k−1∑
l=1

jJl Tl + jAI (5)

jV (t) = jJk

2

(
t−

k−1∑
i=1

Ti

)2

+
k−1∑
l=1

jJl Tl

(
t−

l∑
i=1

Ti

)

+
k−1∑
l=1

jJl T
2
l

2
+ jAIt+ jVI (6)

jX(t) = jJk

6

(
t−

k−1∑
i=1

Ti

)3

+
k−1∑
l=1

jJl Tl

2

(
t−

l∑
i=1

Ti

)2

+
k−1∑
l=1

jJl T
2
l

2

(
t−

l∑
i=1

Ti

)
+

k−1∑
l=1

jJl T
3
l

6

+ jAI

2
t2 + jVIt+ jXI (7)

This general expression of the trajectories and their deriva-
tives can be used directly to control a arm, for example, but
it is not easy to obtain directly. So we will now describe
different generators to build them.

III. TRAJECTORY GENERATORS

As different motion problems exist, we need a coherent set
of trajectory generator. To classify these trajectory generators
we use the different types of motions we wish to define Soft
Motions for. The first one is the point-to-point motion that
can be done in minimum time or in an imposed time. A
point-to-point move is a move where the mobile starts from
rest and stops after the move. A more general problem is
defined between two general situations; in this case the initial
and final conditions are arbitrary. The motions can also be
defined by a set of via point to approximate or interpolate.
A very interesting problem is to approximate any trajectory
by a Soft Motion one. Finally Soft Motions can be classified
by the dimension of the motion space.

In the following sections, we present generators for each
of these trajectory problems, beginning by the simpler to
build the more complex.

A. One-dimensional generator

To cope with system physical limits using 3rd degree
polynomial functions, we can limit the jerk, the acceleration
and the velocity:

−Jmax ≤ J(t) ≤ Jmax (8)
−Amax ≤ A(t) ≤ Amax (9)
−Vmax ≤ V (t) ≤ Vmax (10)

This limits define a domain for the one dimensional systems
presented in the figure 2 bottom using the Acceleration-
Velocity frame. In this diagram, motions with constant jerk
draw parabolas.

A canonical generation of trajectory problem is defined in
this domain by initial and final conditions:

X(tI) = XI V (tI) = VI A(tI) = AI (11)
X(tF ) = XF V (tF = VF A(tF ) = AF (12)

The quasi-optimal solution in minimum time to this problem
is presented in [3], [4]. The well known canonical case of
long point-to-point motion is depicted in figure 2. In this
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Fig. 2. Top: Position, velocity, acceleration and jerk for a point-to-point
move in function of time. Bottom: the same move in the frame Acceleration-
Velocity with the bounds of the validity domain.

Fig. 3. Graphic user interface of the Soft Motion planner displaying a
general short motion.

case the motion is composed of seven segments of 3rd

degree polynomial functions. This is the maximum number
of segments as either the point with maximal velocity or
with minimal velocity can be reached with three segments
from any situation and similarly to return to any situation.
From a computation point of view, the figure 3 exhibit the
worse case where the intersection of three parabola has to
be computed. This case generates a polynomial equation of
degree 6 numerically solved by Raphson-Newton method.

0

1

0

1

0

1

Fig. 4. Valid interval of time for a set of axes and the time Timp

corresponding to the move in minimum time.

B. N-dimensional point-to-point generator

The generation of trajectories in multidimensional spaces
is far more complex as we will see in the next section, but
the point-to-point motion is a particular case that can be
bring back to a unidimensional problem. Suppose the line
joining the initial and final points in RN is defined relatively
to a basis {vi}0<i≤N by a vector v =

∑N
i=1 αivi with∑N

i=1 α
2
i = 1. The velocity, the acceleration and the jerk

are respectively limited for each axis i by ViM , AiM and
JiM .

The minimum time trajectory is directly obtained by
projecting on each axis the solution of the one-dimensional
problem defined on the line segment by the limits [4]:

Jmax = min
16i6N

1
αi
JiM (13)

Amax = min
16i6N

1
αi
AiM (14)

Vmax = min
16i6N

1
αi
ViM (15)

For each segment of the trajectory, one of the velocity
acceleration, or jerk functions of one of the N initial axes is
saturated. The others are inside their validity domain.

C. N-dimensional general generator

In this case, initial and final velocity and acceleration are
no longer zero and the problem can no longer be linearized.
In a first step, we compute the minimum time movement
using the method of the paragraph III-A for each axis and
select the longest one Tmin = max1≤i≤n Topti. The mini-
mum time movement for the move cannot be lower than this
time Tmin. In some case, it is possible to compute for each
of the other axes a move in this time Tmin. Unfortunately
the minimum time for the move can be larger than Tmin as
it is not always possible to increase the time of a motion for
all values. For example, suppose a one axis mobile moving
at Vmax during a short time ti so it travels a distance of Xi.
Therefore, we wish to increase ti of δt. For some δt = δl
we obtain a limit case where the movement is composed of
two segments, the first with the jerk −Jmax and the last with
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Fig. 5. The initial trajectory Tin and the approximated T .

Jmax. For a δt < δl an infinity of solution exists to do the
move in ti + δt, but for δl < δt < δu there is no solution.
δu corresponds to the necessary time to the mobile to stop
going beyond the final point, to go back and return. As we
choose an initial motion at Vmax it is not possible to do the
move in a time less than ti. Figure 4 shows the choice of
the minimum valid time Timp for a set of axes. In the case
of the picture, the minimum time for each axis is Topt of
the first axis and the minimal time feasible is Tstop of the
second axis.

So we can determine the minimum time Timp for an N-
dimensional move. But an infinity of solutions exists. Our
system proposes one solution, but an optimum criterion is
still to build hoping it gives simple computations. The shape
of the path defining the trajectory depends on this choice.
For motion planning in presence of obstacles this choice has
an important influence.

Now we have a solution to generate a trajectory to define a
move between two situations. In the following we introduce
generators that master the shape of the trajectory between
the initial and final situations.

IV. TRAJECTORY APPROXIMATION:

We now wish to define any motion with a set of polyno-
mial trajectories of third degree. To do this, we propose to
approximate any trajectory by a Soft Motion trajectory.

Suppose Tin is an arbitrary trajectory defined, for example,
by a path P and a motion law u = u(t). Both the path P
and the law u can be defined by a large variety of curves
(Bézier, NURBS, sinusoid etc.). If the differentiability class
of this trajectory is at least C2, a good approximation can
be computed. But in case of discontinuity, we must accept a
higher error. This error can be balanced between a geometric
error and a time error. In case of geometric errors, the initial
and realized paths are different but outside these difficult
zones the trajectory can be precisely realized. In case of time
errors, the mobile can stop to stay on the path and ensure
velocity and acceleration continuity, but such a modification
introduces a delay for the remaining trajectory.

A. The three segments method

If we consider a portion of the trajectory Tin defined by
an initial instant ti,I and a final instant ti,F , Tin defines the
initial and final situations to approximate: (XI , VI , AI) and
(XF , VF , AF ).

An interesting solution to approximate this portion of tra-
jectories is to define a sequence of three trajectory segments
with constant jerk that bring the mobile from the initial
situation to the final one in the time Timp = tF − tI . We

Fig. 6. Jerk profile for the axis j of the trajectory T .

choose three segments because we need a small number of
segments and there is no always solution with one or two
segments.

The system to solve is then defined by 13 constraints :
the initial and final situations (6 constraints), the continuity
in position velocity and acceleration for the two switching
situations and the time. Each segment of trajectory is defined
by four parameters and one time. If we fix the three duration
T1 = T2 = T3 = Timp

3 , we obtain a system with 13
parameters where only the three jerks are unknown. As the
final control system is periodic with period T , the times
Timp/3 must be a multiple of the period T and Timp chosen
to be a multiple of 3T .

The 3 jerks are then defined by: J1

J2

J3

 = A−1.

 B1

B2

B3

 (16)

with

A−1 =
1

Timp


1 −9 27

−7/2 27 −54

11/2 −18 27

 (17)

and

B1 = AF −AI

B2 = VF − VI −AITimp

B3 = XF −XI − VITimp −AI

T 2
imp

2
More details can be found in [5] and [4].

B. Distance between trajectories:
An important characteristic of the approximation is the

maximum error between the two trajectories. As several dis-
tances exist to compare trajectories, we choose the Hausdorff
distance and the synchronous Euclidean distance. Another
interesting measure of the difference is the synchronous
Euclidean distance between the velocities.

The synchronous Euclidean distance is defined by:

dSE = max
t∈[tI ,tF ]

√√√√ n∑
j=1

(jT (t)−j Tin(t))2 (18)

The synchronous euclidean distance between velocities is
defined by:

dSEV = max
t∈[tI ,tF ]

√√√√ n∑
j=1

(
djT (t)
dt

− djTin(t)
dt

)2

(19)
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The Hausdorff distance is defined by:

dHaus = max( sup
tin∈[tI ,tF ]

inf
t∈[tI ,tF ]

d(Tin(tin), T (t)), (20)

sup
t∈[tI ,tF ]

inf
tin∈[tI ,tF ]

d(T (t), Tin(tin))) (21)

Depending on the type of problem, one of these distances
is generally more appropriated. If the geometry of the path
is important as for example for machining application, the
Hausdorff distance is a good choice. For moves in free space,
coordination is more important and so the synchronous Eu-
clidean distance is suitable. The distance between velocities
is more sensible to identify the variation due to the motion
law.

C. Error of approximation for a trajectory

We suppose now that Tin is bounded respectively in jerk,
acceleration and velocity by Jmax, Amax and Vmax. We
show in this paragraph that a relation exists between the
error of approximation, the time Timp and the bound Jmax.

Let Vin and Ain denote respectively the velocity and
acceleration of Tin. In a first time, we examine the case
where the trajectory Tin to approximate satisfies:

Tin(tI) = Tin(tF ) = 0 (22)
Vin(tI) = Vin(tF ) = 0 (23)
Ain(tI) = Ain(tF ) = 0 (24)

One can verify that this initial and final conditions gives three
null jerks (See eq. 16).

The trajectory to approximate Tin that gives the maximum
error is symmetric. As the trajectory to approximate Tin

is kinematically bounded and due to the symmetry, the
maximum error between the two trajectories is at the middle
of the trajectory. Likewise, the maximum error is obtained for
a saturated function. For a short trajectory, the acceleration is
not saturated and the more difficult function to approximate
is defined by the four segments trajectory:

T1 = T4 = Timp ∗
2−
√

2
4

(25)

T2 = T3 = Timp ∗
√

2
4

(26)

and the jerks are J1 = J3 = Jmax J2 = j4 = −Jmax.
The maximum error between the two trajectories is then:

ε =
√

2− 1
48 ∗
√

2
= 0.0061× Jmax ∗ T 3

imp (27)

General case: Suppose T (t) is the approximation by the
3 segments method of the trajectory Tin(t)between tI and
tF .

We can write the Tin(t) trajectory as Tin(t) = T (t) +
(Tin(t)− T (t))

By design the trajectory T0(t) = Tin(t)−T (t) verifies the
conditions 22, 23, and 24.

So the approximation error of T0(t) on [TI , TF ] by a
trajectory composed of three segments of cubic polynomial
trajectory is less than 0.0061× T 3

imp ∗ (2× Jmax).
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Fig. 7. From a polygonal path to a Soft Motion trajectory.

As T (t) is approximated without error, Tin(t) that is the
sum T (t) + T0(t) can be approximated with an error less
than: 0.0061× T 3

imp × (2× Jmax).
This result is extremely interesting as it gives the length

of the interval to approximate a function while insuring the
approximation error is smaller than a defined limit.

D. Example of a circular trajectory:

To approximate a trajectory following a circle of radius
R at constant speed ωR, we can compute the maximum
time interval Timp to approximate the circle with a maximum
error of ε.

The trajectory of the motion is defined by:

Xx(t) = R× cos(ωt) (28)
XY (t) = R× sin(ωt) (29)

and the jerk by:

JX(t) = ω3R× sin(ωt) (30)

JY (t) = −ω3R× cos(ωt) (31)

So the constant jerk is ω3R and the maximum time interval
is then

T =
ε
√

3
0.0061× 2× J

=
ε
√

3
0.0061× 2× ω3R

(32)

For a mobile completing a turn in one second about a circle
of radius R = 0.1m with a maximum error of ε = 10−6,
T is T = 0.0149s corresponding to 68 points (6 points for
an error of ε = 10−3, T ). This result can be used directly
when radius of curvature is known and the path is traversed
at constant speed.

V. GENERATING TRAJECTORY FROM POLYGONAL PATH

The main advantage of the Soft Motion trajectories is to
insure a continuity of data and reasoning from the high
planning level to the control level. Most of the motion
planners as, for example RRT planners [6], [7], produce only
paths in the form of polygonal lines. The assimilation of a
path to a trajectory commonly performed at planning level is
not acceptable for control. So these paths should be converted
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in trajectories. We suppose the line segments of the path
are relatively long after a path planner optimization phase
and so the robot can reach the maximum velocity and stop
to traverse each segment. Given a set of kinematic limits
{Jmax, Amax, Vmax}, a trajectory stopping at each vertex is
easily build using the linear generator of paragraph III-B.

In [5] we proposed to use a twofold strategy to smooth
this trajectories. The first idea is to smooth the vertex of
the polygonal line between the points where the robot must
begin to decelerate (ICT ) and can stop to accelerate (FCT )
following precisely the path (see figure 7). Between the
two situations FCT and ICT the 3 segments method gives
a simple path. The second strategy take into account that
the initial polygonal trajectory that stop at the vertex has
no collision and can be used when the smoothed trajectory
causes a collision.

The time to go from FCT to ICT is defined by the method
presented in paragraph III-C. As we wish a continuous
motion, we use the 3 segments method of the paragraph IV.
The trajectory is then checked for collision.

This strategy to compute a smoothing segment of trajec-
tory can be improved by optimizing the choice of the initial
and final points defining the segment [4] as a shorter segment
generating a smaller error is preferable in some situations.
The trajectory computed by choosing initial and final points
between ICT and P1 and P1 and FCT respectively is
sometimes feasible.

VI. A TRAJECTORY CONTROLLER

We suppose each axe of the mobile is equipped with a low
level controller, for example a PID controller. This low level
controller can be directly fed from a trajectory definition
using the expressions 7 or 6.

In general, controllers can also get feedback from com-
plex localization systems: a mobile manipulator robot which
exchange an object with a human needs to localize itself,
the human and the object. To obtain its position this robot
can use different sensors (cameras, lasers, odometry) and
localization techniques based on different sensors, different
geometric elements and different filtering techniques. To
localize the object, it can use stereovision or point cloud
obtained from sensors like Kinect.

So, a general control problem can be defined by:
1) a frame in which the trajectory to follow, which is

generated by high level, is defined.
2) the current position, velocity and acceleration of the

mobile.
3) the current position, velocity and acceleration of the

target.
4) a trajectory to be executed by the controller.

A. The frame of a trajectory

Given a situation where a robot is supposed to grasp
an object handed by the human. At the beginning of the
task, a planner computes a trajectory for the robot. At this
instant, the trajectory can be expressed in any moving or
fixed frame equivalently. But after a short moment, because

ti

ti

tj

T

T

S

Fig. 8. Trajectory control: At instant ti, the mobile should be at point
Tti on the blue trajectory, but it is in point Sti because of the situation
change. The orange trajectory reaches the blue at the instant tj . The green
trajectory reaches the blue trajectory in a longer time and the purple one in
a shorter time.

of the movement of humans and robots, the trajectories
expressed in the alternative frames are different. For example,
the end of the trajectory defines an approaching path defined
to avoid collisions. This local path must be defined in a frame
associated to the object, so that the gripper approaches the
object along this path even though the object is moved by the
human. In the same way, if the beginning of the trajectory is
defined in the frame associated to the object and the human
rotate a little the object at the beginning, the start of the
trajectory can made a big move relatively to a fixed frame.

So each part of a trajectory must be associated to a frame
in which it must be controlled. The choice of the instant to
switch the controller from one frame to another must also
be defined. In the previous example, the system can switch
from the robot base frame to the object frame when the
gripper reaches some distance from the object. Eventually,
it is possible to define an intermediate segment of trajectory
controlled in a third frame, for example a frame associated
to the human hand.

When a robot is very close to an obstacle, controlling the
robot in a frame fixed to this obstacle is generally a good
solution to minimize the uncertainty and limit the risk of
collision.

In conclusion, the planner must generate a trajectory and
associate a control frame to each part of the trajectory.

B. Computing a control trajectory

Given a segment of trajectory that has to be controlled in
some frame, we present now a control strategy to cope with
the inherent uncertainty associated to the position. Because
of the large position error associated to the base position,
of the possibility to switch from a controller to another or
of the possibility to switch from a sensor to another, the
distance between the real position and the setting position
can be large.

The control problem is illustrated in figure 8 where some
mobile must follow the blue trajectory. At the instant ti,
the mobile should be in point Tti but it is in Sti . Only the
position is depicted on the figure but the system take also
into account velocity and acceleration.

From this initial situation, the controller must compute a
control trajectory that reaches the input trajectory as soon

126



Motion capture
markers

3D model
(spark)Kinect

(niut)

Objects
localisation

(viman)

Kuka LBR-IV
(lwr)

Stereovision 
(platine)

Neobotix 
mobile base

(jloco)

Fig. 9. A human interacting with the robot Jido and the main elements of
the system.

as possible while complying with constraints. This can be
done simply by computing a trajectory to reach the input
trajectory for each instant tk for k > i until a valid trajectory
is obtained. The computed control trajectory is drawn in
orange in the figure 8. Due to real time constraints, it must
be necessary to define a more efficient strategy in case of
important error and k large.

The error between the real situation and the desired one at
an instant can be due to many reasons. The strategy to build
a control trajectory that reaches the input trajectory can be
different in function of the problem. The previous solution
is the solution when the objective is really the trajectory, but
in some case the path is more important than the time and
it can be preferable to choose a shorter path to minimize
the Hausdorff error to the path. The purple trajectory of the
figure 8 shows an example of such a trajectory. Of course in
this case we accept a delay for the mobile. Later the mobile
can or cannot catch up with this delay depending on the
problem and conditions.

Similarly, a smoother trajectory could be preferable, the
green trajectory of the figure 8 gives an example.

This control trajectory are computed with the three seg-
ments algorithm presented in section IV-A as the initial and
final situations are precisely defined.

C. Target tracking

Trajectory control can also be used in the absence of input
trajectory. For example for the robot reach a relative position
between the robot hand and an object, the local control
trajectory can be directly defined between the current state
of the robot hand (position, velocity, acceleration) and the
future state of the target. The future state of the target is
estimated assuming a continuous and regular motion.

In this case the time to reach the target is not imposed and
the trajectory generator presented in section III-A is used. If
we need that all the axes move synchronously, the method
presented in section III-C can be used.

This approach can also be used at the end of a controlled
trajectory move to maintain the relative position of the hand.

Fig. 10. A spiral trajectory approximated. Left the jerk, the acceleration
and the velocity profiles.

VII. EXPERIMENTAL RESULTS

To illustrate the implementation of this tools based on Soft
Motion trajectories, we present results carried out with our
Jido robot. Jido is built up with a Neobotix mobile platform
MP-L655 and a Kuka LWR-IV arm. Jido is equipped with
one pair of stereo cameras and a Kinect motion sensor. The
figure 9 describes the main elements of its architecture. To
integrate the software, we use GENOM1 [8], a development
environment for complex real time embedded software, and
robotpkg2, a compilation framework and packaging system
for installing robotics software.

To simplify the robot software, the different modules are
organized around the SPARK module, which receives the
data from all the software modules and builds a model of
the scene. An example of this model is presented in the
background of the figure 9. SPARK processes internal data
from software modules that interface sensors and actuators
(position of the arm and hand, position of the stereovision
plate, odometer etc) and data about environment and humans
(Kinect, motion capture, stereovision etc). The advantage of
this centralized approach is the possibility for the module
SPARK to compute accurate positions and kinetic parameters
using different input data and filtering techniques. The robot
is also equipped with a collision checker that verifies in line
the risks of collision and stop the robot if necessary. In the
actual implementation this module cannot take into account
moving objects in the environment.

A human aware planner [9] computes a trajectory for the
robot from the SPARK model and a description of the task
to achieve. The use of position from SPARK can avoid some
switch of controller input, but it introduces a delay to filter
and fusion inputs.

The figure 10 shows the result of the approximation
of a spiral trajectory. The original spiral was made using
inkscape3, so it is defined by a series of Bézier curves and
a motion law defined as a one dimensional point-to-point
trajectory. The error of approximation is depicted in figure
11.

1http://www.openrobots.org/wiki/genom
2http://homepages.laas.fr/mallet/robotpkg/
3http://inkscape.org/

127

http://www.openrobots.org/wiki/genom
http://homepages.laas.fr/mallet/robotpkg/


Fig. 11. The approximation error of the spiral curve.
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Fig. 12. A plot of the trajectory realized by the jido arm following a box
handle by an human.

Figure 12 shows the trajectory executed by Jido during a
task where the robot try to maintain its hand in a pre-defined
position relative to a box. The trajectory was recorded when
a human moved the box in front of the robot. The position
of the box is obtained by stereovision tracking a tag plotted
on the box.

The figure 13 shows Jido writing the word Dexmart. The
trajectory was defined by a path drawn using inkscape and
then approximated using the results of the section IV. The
input trajectory is traveled at constant velocity. The Soft
Motion approximation stops at cusp. The controller uses
impedance control to maintain a constant force in the normal
direction.

The figure 14 shows a trajectory build from a polygonal
line to grasp an object.

A significant advantage of using trajectory controller is
that the controller can work with different frequencies. For
example, the position can be measured every 0.1s by vision
and a low level controller that uses an impedance controller
can run at 1kHz. This possibility simplifies the design of the
controllers.

Fig. 13. Jido writing along a approximated trajectory.

Fig. 14. Left: A simulated move to a gripper grasp an object. Right: The
detail of the path defining the trajectory and the initial polygonal line.

VIII. CONCLUSION

In this paper we have presented a set of trajectory tools to
animate machines. A first interesting point is the proposal
to use polynomial third degree trajectories (Soft Motions
trajectories) because they define a simple and powerful class
of trajectories. We proposed a set of trajectory generators that
can be used to effectively build Soft Motions trajectories.

From these tools we described how to generate trajectories
at planning level and then how to control a robot in several
situations.

We can conclude with the hope to build a robot based on
Soft Motion trajectories. This robot will embed a trajectory
planner like the one we outlined but it should associate to
each generated trajectories the frames in which the move
must be controlled and the condition to switch between
controllers. We have proposed a set of basic controllers; this
set must be enlarged with force controllers. A tool to switch
between these controllers and manage the state of this meta-
controller should be defined and built.

Lastly, the coordination of the motions of a full robot
(base, arms, hands, head) or of two or more robots is also
very challenging, trajectories could help to synchronize this
motions.
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Open-loop and closed-loop filters for optimal trajectory planning
under time and frequency constraints

Luigi Biagiotti, Roberto Zanasi

Abstract— Dynamic filters for real-time trajectory generation
can be designed in different ways with quite different levels
of performances and complexity. However, one can observe
that the configurations of such filters are based on two main
schemes: systems composed of a chain of integrators with a
feedback control and systems formed of a sequence of linear
filters disposed in a cascade configuration. According to these
schemes, it is possible to obtain minimum-time trajectories
under constraints of velocity, acceleration, jerk and even higher
derivatives. In both cases, the degree of continuity of the
resulting trajectory depends on the ordern of the filter, which
can be designed according to a modular approach.
After a short overview of the structure of the trajectory
generators, pro and cons of the two approaches are analyzed.
In particular, the attention is focussed on linear filters, since
their structure allows a straightforward characterization of the
trajectory from a frequency point of view. As a consequence,
the generator can be designed by taking into account frequency
constraints, besides more standard time constraints (i.e. limits
on velocity, acceleration, etc.). The proposed method combines
the advantages of minimum-time trajectories with those of
input shaping techniques. Moreover, it is possible to prove that,
under additional hypotheses, the same chain of linear filters
proposed for minimum-time trajectories generation can be used
for obtaining uniform B-spline curves, that are widespread in
the robotic field when the interpolation of a set of given via-
points is required. In this case, the additional constraints do
not allow to impose limits on the velocity or acceleration, but
only to properly shape the trajectory in the frequency domain.
It is therefore possible to select the trajectory/filter parameters
with the purpose of suppressing residual vibrations, that may be
present because elastic phenomena affecting the robotic system.

I. I NTRODUCTION

Online generation of trajectories subject to kinematic con-
straints (on velocity, acceleration, jerk, etc.) plays a central
role in all those applications where the motions cannot be
planned a priori and must be optimized with respect to
the time. Robotic systems are probably the most important
example of such applications because their flexibility and
the complexity of the required movements. For this reason,
a large number of papers addressing this problem is available
in the scientific literature tied to the robotic field, both for
single-axis applications and for multi-axis motions. With
respect to this problem, several filters based on control
theory have been proposed, see e.g. [1], [2], [3], [4] among
many others. These trajectory generators are based on two
opposite design philosophies, i.e. closed-loop and open-loop

L. Biagiotti and R. Zanasi are with the Department of
Engineering “Enzo Ferrari” (DIEF), University of Modena and
Reggio Emilia, Via Vignolese 905, 41125 Modena, Italy, e-mail:
{luigi.biagiotti, roberto.zanasi}@unimore.it.

approaches. Both allow to obtain minimum-time trajectories
compliant with given limits on velocity, acceleration, jerk,
etc., by specifying in runtime the desired final position.
Additionally, the structure of the dynamic filters has relevant
implications on the spectral content of the motion profile and
can be properly modified in order to take into account fre-
quency specifications and not only time-domain constraints.
As a matter of fact, the need of high velocities often leads
to the excitation of eigenfrequencies of the machines/robots
caused by structural flexibilities and may produce vibrations
and large tracking errors. For this reason, a number of works
copes the problem of filtering preplanned trajectories in order
to reduce residual vibrations. The available methods range
from low-pass and notch filters to input shaping techniques,
see [5] for a comparative overview, but only recently an
online generator, based on a chain of linear filters, that
combines the advantages of minimum-time trajectories with
those of shaping techniques has been proposed [6].
With some additional constraints on the free parameters of
the filters, it is possible to show that open-loop generators
for minimum-time trajectories share the same structure of
generators for B-splines curves which are extensively used
in robotics in order to define smooth trajectories crossing
a set of given via-points. Therefore, the considerations and
the techniques used for properly shaping the spectral content
of minimum-time motions can be extended to this class of
curves.
The paper is organized as follows. In Sec. II the main
concepts tied to time-optimal trajectories and dynamic filters
for online trajectory generation are presented, and a general
overview on closed-loop and open-loop filters is provided.
Then, in Sec. III the two different types of trajectory gener-
ators are compared with respect to the different problems that
they can solve (point-to-point optimal trajectory generation,
smoothing of pre-planned trajectories, etc.). In Sec. IV open-
loop filters are analyzed in the frequency domain and their
parameters are set with the purpose of properly shaping
the spectrum of the output trajectory. Similar considerations
are reported in Sec. V with respect to B-spline trajectory
generation. Concluding remarks are reported in the last
section.

II. OPTIMAL TRAJECTORIES AND DYNAMIC FILTERS

The optimization process of trajectories subject to con-
straints on velocity, acceleration, jerk, etc., leads to the so-
called multi-segment trajectories, i.e. trajectories composed
by several tracts properly joined, each one characterized by a
specific analytical expression, and in which the velocity, the
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r(t) 1

s

1

s
C

u = x0 xn−1x1 xn = qn(t)

x0 x0

xn xn

Fig. 1. Structure of a closed-loop trajectory filter ofn-th order.

acceleration, or higher derivatives (depending on the required
order of continuity) are saturated to the maximum allowed
value. By imposing constraints on the firstn derivatives, i.e.

q
(i)
min ≤ q(i)n (t) ≤ q(i)max, i = 1, . . . , n (1)

one obtains a trajectoryqn(t) of classCn−1, that is with the
first n − 1 derivatives that are continuous, while then-th
derivative q

(n)
n (t) is a piece-wise constant function whose

values belong to a set{q(n)min, 0, q
(n)
max}. The numbern is

called order of the trajectory. The dynamic filters for trajec-
tory planning generate on-line a time optimal trajectoryqn(t)
that tracks at best a reference signalr(t), satisfying desired
constraints on the firstn derivatives ofqn(t). The reference
signal r(t) is generally given by a first coarse trajectory
generator providing for instance a piecewise constant profile
which defines the desired final positions, or is an external
input, given for example by a human operator.
The trajectory planners based on feedback regulation are
composed of a chain ofn integrators and a nonlinear
controller able to nullify in minimum time the tracking error
between the reference inputr(t) and the integrators output
xn(t) = qn(t), being compliant with constraints (1), see
Fig. 1. In [7] a modular solution is proposed. According to
this approach, then-th order trajectory planner is designed
around the filter of ordern− 1, as illustrated in Fig. 2. The

x0x0

x0

x0x0

x0

xi−2xi−2
xi−1

xi−1

xi−1

xi−1

ri 1

s
Si−1Ci

Si

xixi−1ui = ri−1

xi
xi−1

Fig. 2. Structure of thei-th control loop (S0 = 1) of the modular closed-
loop trajectory generator.

structure of the i-th controller is

Ci : ui =











xi−1, if yi ≤ hi(yi−1, yi−2, . . . , y1)

0, if yi−1 = yi−1 = . . . = y1 = 0

xi−1, if yi ≥ hi(yi−1, yi−2, . . . , y1)

(2)

where xi is the output of the filter, that is the position
trajectory,ri is the reference signal that denotes the target
position andyi = xi−ri is the tracking error. The parameters
xi−1, xi−1 denote the limits on the first derivative ofxi.
While the structure ofCi, which is based on variable
structure control, is rather simple, the expression of the
function hi(·) that appears in (2) is very complicated also
for small values of the indexi, see [7] for the detailed
expression. Moreover, the computation ofhi(·) for i > 3
is critical and has not been performed yet. Therefore, at
the moment, only second- or third-order trajectories may
be generated according to this approach. Finally, the digital
implementation of the trajectory generator starting from its
continuous-time expression is not straightforward and cannot
be obtained by a simple discretization of the integrators chain
since the filter will be certainly affected by chattering. For
this reason, ad hoc solutions are required.
Open-loop trajectory generators are characterized by a very
simple structure which allows a generalization up to what-
ever ordern with only a little increase of complexity and
computational burden. As a matter of fact, a multi-segment
trajectory of ordern can be obtained by filtering a step input
with a cascade ofn dynamic filters, each one characterized
by the transfer function

Mi(s) =
1

Ti

1− e−sTi

s
(3)

where the parameterTi (in general different for each filter
composing the chain) is a time length, see Fig. 3. In
mathematical terms, this means that

qn(t) = h · u(t) ∗m1(t) ∗m2(t) ∗ . . . ∗mn(t) (4)

whereu(t) denotes the unit step function,h is the desired
displacement andmi(t) = L

−1
{Mi(s)} is the impulse

response of each filter. The parametersTi can be selected
with the purpose of imposing desired bounds on velocity,
acceleration, jerk and higher derivatives, i.e.

|q(i)n (t)| ≤ q(i)max, i = 1, . . . , n (5)

by assuming

T1 =
|h|

q
(1)
max (6)

Ti =
q
(i−1)
max

q
(i)
max

, i = 2, . . . , n

h · u(t) qn(t)q1(t) q2(t) qn−1(t)1− e−sT1

sT1

1− e−sT2

sT2

1− e−sTn

sTn

Fig. 3. System composed byn filters for the computation of an optimal
trajectory of classCn−1.
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with the additional constraints

Tj ≥ Tj+1 + . . .+ Tn, j = 1, . . . , n− 1. (7)

For more details refer to [6].
In order to evaluate the trajectory at discrete time instants
kTs, beingTs the sampling period, the system composed by
n filters may be discretized by applying on each filterMi(s)
the backward differences method that leads to the expression
of a moving average filter

Mi(z) =
1

Ni

1− z−Ni

1− z−1
(8)

whereNi = Ti/Ts is the number of samples (not null) of
the filter response. Note thatNi is also equal to the number
of elements composing the FIR filter (usually calledtaps) as
they appear in the equivalent (nonrecursive) formulation

Mi(z) =
1

Ni

+
1

Ni

z−1 +
1

Ni

z−2 + . . .+
1

Ni

z−Ni−1. (9)

The implementation of the proposed trajectory generator on
a digital controller can be achieved by simply considering
the functionMi(z) in lieu of the corresponding function
Mi(s) in the block-scheme of Fig. 3. Note that the digital
implementation of each filter only requires two additions and
one multiplication. As a consequence, even for high values of
the degreen, the trajectory generator (composed byn filters)
results very efficient from a computation point of view.

III. A COMPARISON BETWEEN CLOSED-LOOP AND

OPEN-LOOP FILTERS

Besides the different structure, the two groups enjoy
peculiar features that make each type of generator preferable
for a specific application. Closed-loop filters are superiorto
analogous open-loop systems in terms of performances and
flexibility, since they allow to take into account asymmetric
bounds, which can even modified in runtime. Moreover,
they do not require additional constraints among the filter
parameters such as (7). On the other hand, they are affected
by some limitations: presence of chattering superimposed
to the output, high complexity of the implementation, high
computational burden, maximum ordern = 3. For these
reasons the choice of a particular type of filter must be
performed according to the specific application to be carried
out. For instance, in standard tasks where online generation
of point-to-point trajectories is required, if the desiredbounds
of velocity, acceleration, jerk, etc. meet the conditions (7),
open-loop filters are preferable. As a matter of fact, as
reported in Fig. 4(a) and Fig. 4(b) the two generators provide
the same trajectory but with very different costs in terms of
computational complexity. Moreover, in Fig. 4(a) one can
observe the chattering in the jerk profile and the overshootsin
the acceleration. Figure 4(c) shows the fourth order trajectory
q4(t) obtained by applying the same stepwise input function
to a chain of four running average filters. With a little
increase of complexity, one can obtain the time-optimal
trajectory with the desired degree of smoothness.
On the other hand, if the input function changes before
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Fig. 4. Comparison between the output of the third order closed-loop filter
(a) and those of a third order (b) and fourth order (c) open-loop filter with
the same inputr(t) composed by step functions.
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Fig. 5. Comparison between the output of the third order closed-loop filter
(a) and that of a cascade of three moving average filters (b) with the same
input r(t) composed by step functions.

that the previous tract of trajectory has ended, the open-
loop generator cannot guarantee the compliance with the
constraints, see Fig. 5(b). On the contrary, closed-loop
filters always fulfill the prescribed constraints, as shown
in Fig. 5(a). Moreover, as already mentioned, in case of
feedback controlled trajectory generators, it is possibleto
consider asymmetric limits, i.e.q(i)max 6= −q

(i)
min, or even

change the values of the bounds in runtime. In this case,
the controller will act so that the new limits are satisfied
in minimum time. For instance, in Fig. 6(b) the behavior
of the filter is shown when the minimum value of velocity
is increased from−0.2 to −0.1. As soon as this occurs,
the controller modifies the velocity of the motion profile
in order to meet the new limit but without violating the
other constraints on acceleration and jerk. Conversely, by
adopting an open-loop generator it is not possible to change
the constraints during the planning of a trajectory, since
this would require a structural modification of the filters
composing it, leading to discontinuities of the response. In
fact, the number of taps of the FIR filters is directly related
to the desired bounds by means of (6).
Finally, both closed- and open-loop filters can be used to

modify pre-planned trajectories with the purpose of making
them compliant with the desired bounds and not only to
generate point-to-point multi-segment trajectories. Alsoin
this case the two types of dynamic systems behave quite
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Fig. 6. Response of the third order closed-loop filter to a stepwise input
function under asymmetric constraints of velocity and acceleration (a) and
with a variation of the bound on the velocity (b).
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Fig. 7. Comparison between the output of the third order closed-loop filter
(a) and those of a third order (b) and a second order (c) open-loop filter
with the same inputr(t) composed by ramp functions.

differently. In Fig. 7 the responses to a reference inputr(t)
composed by ramp functions (therefore with constant ve-
locity and impulsive acceleration) are reported. The closed-
loop filters tries to reach in minimum-time and then to
track the referencer(t), satisfying the given constraints.
On the contrary, the third order open-loop filter produces
a smoother but delayed version of the input. Note that the
output signal reaches the constant velocity of the ramps but
that all the other constraints are not reached. Moreover, since
the input signal is continuous the resulting trajectory has
continuous jerk. Therefore it is possible to consider a lower
order trajectory filter (second-order), with the parameters

T1 =
q
(1)
max

q
(2)
max

, T2 =
q
(2)
max

q
(3)
max

to assure that all the constraints are satisfied. In this way,
the total (constant) delay between the input and the output
is reduced, beingTtot = T1 + T2, see Fig. 7(c).
Although the design of the third order closed-loop filter is
based on the hypothesisr(4) = 0, the variable structure
control allows to consider generic input signalsr(t) that do
not fulfill this condition. In Fig. 8(a) the response of the filter
to a generic input is illustrated. When the desired bounds
are met the output follows exactly the input but when the
reference overcomes such values the filter limits the output.
In this case the reference input may represent the commands
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Fig. 8. Comparison between the output of the third order closed-loop filter
(a) and that of a cascade of three moving average filters (b) with a generic
input r(t).

provided by an external system or a human operator, and
the trajectory filter can be profitably exploited to make them
compatible with the physical limits that are present in any
plant.
On the contrary open-loop filters behave like a standard

low-pass filter, and therefore if the input signal is “too fast”
the output will result quite deformed (and delayed), see
Fig. 8(b). For this reason, the chain of FIR filters is not
suitable for an application to generic inputs, but on the other
hand, its filtering properties makes this kind of generators
quite attractive when frequency specifications must be taken
into account [8].

IV. FREQUENCY CHARACTERIZATION OF OPEN-LOOP

FILTERS AND SPECTRAL SHAPING OF THE TRAJECTORY

The spectrum of the trajectory planned with an open-loop
filter can be readily deduced by considering its expression
in terms of Laplace transform (directly obtained from (4)),
i.e.

Qn(s) =
h

s
·M1(s) ·M2(s) · . . . ·Mn(s). (10)

As a matter of fact, as it is well known, the Fourier transform
of qn(t) immediately descends fromQn(s), being the restric-
tion to the imaginary axis, i.e.Qn(jω). Therefore, the closed-
form expression ofQn(jω) is given by the products of the
Fourier signal corresponding to the inputhu(t) and of the
frequency responses of the filters composing the trajectory
generator:

Qn(jω) =
h

jω
·M1(jω) ·M2(jω) · . . . ·Mn(jω)

where

Mi(jω) =
1

Ti

1− ejωTi

jω

= e−j
ωTi

2

sin
(

ωTi

2

)

ωTi

2

. (11)

Since the frequency characterization of the trajectory, in-
cluding its derivatives is a useful tool to predict vibratory
phenomena in the systems to which the trajectory is applied
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Fig. 9. Magnitude of the frequency response of the filterMi(s).

[9], it is necessary to obtain the expression of the spectrumof
the generick-th derivative ofqn(t). Because of the properties
of Laplace transforms, this result is straightforward. As a
matter of fact, the Laplace transform ofq(k)n (t) is given by

Q(k)
n (s) = skQn(s)

and therefore the expression of the spectrum ofq
(k)
n (t) is

Q(k)
n (jω) = (jω)k ·Qn(jω)

= h· (jω)k−1
·M1(jω) ·M2(jω) · . . . ·Mn(jω).

In conclusion, the amplitude spectrum ofqn(t) and its
derivatives, i.e.|Q(k)

n (jω)|, is given by the product of two
main elements:

• a power of ω, i.e. ωk−1, being k the order of the
derivative;

• the (magnitude of the) frequency response of the chain
of n filters Mi(s).

The frequency response of the cascade of filters is the product
of the single frequency responsesMi(jω), i = 1, . . . , n,
whose magnitude is

|Mi(jω)| =

∣

∣

∣

∣

∣

sin
(

ωTi

2

)

ωTi

2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

sinc

(

ω

ωi

)∣

∣

∣

∣

where sinc(·) denotes the normalized sinc function defined
as sinc(x) = sin(πx)

πx
and ωi = 2π

Ti

. Note that the function
|Mi(jω)|, shown in Fig. 13, is equal to zero forω = k ωi,
with k integer. This property can be profitably exploited to
properly choose the parameters of the trajctory/filter with
the purpose of nullifying the spectrum of the trajectory at
critical frequencies, for instance the eigenfrequencies of the
plant. For this aim, ifωr denotes a resonant frequency, it is
sufficient to assume

ωi =
ωr

l
⇔ Ti = l

2π

ωr

, l = 1, 2, . . . . (12)

This result generalizes what has been presented in [10]
where, with reference to a double S velocity trajectory, it is
recognized that in order to suppress residual vibrations due
to the dominating vibratory mode of an axis of motion it is
necessary to assume that the duration of the “jerk period”
(in which the jerk remains constant) equals a multiple of
the natural period of the vibrational mode. According to
(12) the reduction of residual vibrations caused by resonant
frequencies of the plant can be achieved with multi-segment
trajectories of any order provided that the time constantTi
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of a filter Mi(s) is l times,l integer, the dominating natural
periodT0 = 2π

ωr

.
For instance, if a standard motion system composed of two
inertias with an elastic transmission lightly damped [11],
[12], [13] is considered, some parameters of the trajectory
generator can be selected with the purpose of minimizing
frequency components about the resonance of the system.
In Fig. 10 and Fig. 11, the responses of the system to
two different third-order trajectories are reported, and in
particular residual vibrationsε(t) are analyzed. When the
parameterT3 of the third filter of the chain is assumed
equal toT0 vibrations at the end of motion are canceled,
see Fig. 10. On the contrary, if the resonant frequency
ωr is not considered, the motion system may be affected
by residual vibrations as shown in Fig. 11. Note that in
this example, frequency constraints are taken into account
together with time-constraints on velocity and acceleration.
For more details refer to [6].

V. B-SPLINE FILTERS

An interesting property of the filter of Fig. 3 is the
possibility of generating online B-spline trajectories. As a
matter of fact, in [14], it has been shown that uniform B-
splines1 of degreep can be computed by feeding a cascade
of p filters

M(s) =
1

T

1− e−sT

s
, (13)

1Uniform B-spline are defined as

s
p
u(t) =

n∑

j=0

pjB
p
(t− jT ), 0 ≤ t ≤ (m− 1)T,
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Fig. 12. System composed byp filters for the generation of trajectories
based on uniform B-splines starting from the sequence of thecontrol points
pj .

shown in Fig. 12, with the function

p(t) =

n
∑

j=0

pjB
0(t− jT )

wherepj are the control point defining the B-spline curve
(for their computation refer to [14] and [15]) andB0(t) is a
rectangular function defined as

B0(t) =

{

1, if 0 ≤ t < T

0, otherwise.

By comparing the trajectory generator of Fig. 3 with that
of Fig. 12, one can immediately infer that the two systems
are equivalent provided thatT1 = T2 = . . . = Tn = T .
Therefore, the two filters enjoy the same properties and, in
particular, both allow to precisely characterize the motion
profiles from a frequency point of view.
In terms of Laplace transform, uniform B-splines based on
linear filters can be written as

Sp
u(s)=L







n
∑

j=0

pjB
0(t− jT )







·M(s)·M(s) · . . . ·M(s)
︸ ︷︷ ︸

p filters
= P (s) · Mp(s) (14)

Therefore, the closed form expression of B-spline spectrum,
that isSp

u(jω), is given by the products of the Fourier signal
corresponding to the inputp(t) and the frequency response
of the filters composing the trajectory generator:

Sp
u(jω) = P (jω) ·Mp(jω).

Note that in this case, all the filters composing the chain have
the same frequency response since they depend on a unique
free parameterT . The magnitude of the frequency response
of the cascade ofp filters, shown in Fig. 13 forp = 1, 2, 3, 4,
is given by

|Mp(jω)| =

∣

∣

∣

∣

sinc

(

ω

ω0

)∣

∣

∣

∣

p

whereω0 = 2π
T

. Like in case of multi-segment trajectories,
the function|Mp(jω)| is equal to zero forω = k ω0. More-
over, by augmenting the value of the degreep, the spectral
components that follows the frequencyω0 are considerably
reduced. These features of the spectrum ofMp(s) can be
profitably exploited to properly choose the free parameter

where the vectorial coefficientspj , j = 0, . . . , m, called control points,
determine the shape of the curve,Bp

(t) are B-spline basis functions of
degreep, andT denotes the (constant) time-distance between successive
knots, i.e.tj+1 − tj = T, j = 0, . . .m− 2.

of the filter/B-spline trajectory, that is the time-distance
T between the knots, with the purpose of decreasing or
even nullifying the spectrum of the trajectory at critical
frequencies, for instance the eigenfrequencies of the robotic
manipulator. These features make trajectory planning based
on uniform B-spline very similar to input shaping techniques,
consisting in filtering the reference commands by convolving
them with a train of impulses in order to form new commands
that cause little or no vibrations [16], [17]. For this reason, it
may be useful to compare the two kind of filters with respect
to the Percent Residual Vibration (PRV) that they produce on
vibratory systems. In Fig. 14, the PRV obtained by filtering
the command input withM3(s) (that corresponds to a cubic
B-spline) is compared with the PRV related to standard Input
Shapers (IS), that is Zero Vibration (ZV) IS, Zero Vibration
and Derivative (ZVD) IS and so on, whose expression for
an undamped system is

C(s) =

(

1 + e−s π

ω0

2

)p

wherep = 1 corresponds to a ZV IS,p = 2 to a ZVD IS,
etc. The levels of vibration in the neighborhood ofωn = ω0

(beingωn the natural frequency of the system that tracks the
trajectory) forM3(s) and ZVDDD are comparable, but it
is worth noticing that the PRV characteristics of the cubic
B-spline filter is strongly asymmetric. This considerably
augments the robustness of the filter with respect to errors
in the estimation ofωn. The insensitivity ofMp(s), that is
the width of the frequency range where the PRV curve is
below a tolerable vibration level [17], may be easily made
infinite. As a matter of fact, given a desired maximum level
of vibrationsVtol, it is sufficient to chose the degreep large
enough to guarantee that PRV≤ Vtol, ∀ωn ≥ ω0. This result
limits the minimum duration of the B-spline curve: given
a vibratory system for whichωn ≥ ωn,min, the residual
vibrations may be made arbitrarily small (by acting onp)
only if

T ≥

2π

ωn,min

.

This is very important for applications involving robots with
elastic elements, since the natural frequency is not constant
but it is a function of the configurationq [18], [19]. In this
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Fig. 13. Magnitude of the frequency response of the chain of filtersMp
(s)

used for generating uniform B-spline trajectories of degree p.
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Fig. 15. Cartesian Robot tracking a planar trajectory defined by a set of
via-points.

case, one must simply assume

T ≥

2π

minq{ωn(q)}
.

In Fig. 16 and Fig. 17 the tracking of a trajectory obtained
with a B-spline filters and Input Shapers are compared. In
particular, the cartesian robot of Fig. 15 characterized by
joints with elastic transmissions (that lead to natural frequen-
ciesωn = 60 rad/s alongx and z axes andωn = 40 rad/s
in the y direction) is considered. In both cases the level of
residual vibrations, especially along straight-line segments, is
very low but it is worth noticing that also in this ideal case IS
are not able to guarantee the exact interpolation of the given
via-points, while B-spline trajectories interpolate the desired
points. More details about frequency characterization of B-
spline trajectories/filters and their use in robotic applications
can be found in [20].
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Fig. 16. Detail of the trajectory in thex− y plane obtained with B-spline
filters of degreep = 3 (a) andp = 5 (b) (designed withω0 = 50 rad/s).
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Fig. 17. Detail of the trajectory in thex − y plane obtained by filtering
the via-points with ZV IS (a) and ZVDD IS (b)(designed withω0,x = 60

rad/s andω0,y = 40 rad/s).

VI. CONCLUSIONS

Two different design philosophies for online trajectory
planners (namely open-loop and closed-loop approaches)
have been analyzed. Besides their different structure, the
two groups enjoy peculiar features that make each type of
generator preferable for a specific application. In particular,
open-loop systems have a very simple structure and imply a
computational cost lower than similar closed-loop generators.
Because of their simple structure, they can be easily gen-
eralized in order to implement high order trajectories, with
continuous jerk or even higher derivatives. On the other hand,
this kind of trajectory planners suffers from some limitations
that can be overcome by adopting closed-loop filters. As a
matter of fact, filters with a cascade configuration only work
with symmetric constraints on velocity, acceleration, etc..
Moreover, the desired bounds cannot be changed in runtime
and a new trajectory cannot start before the current motion
profile has executed without violating the desired limit val-
ues. On the contrary, closed-loop trajectory generators allow
to modify the limits in runtime and to start a new motion
at any time. However open-loop filters may be preferable
in all those applications that are affected by vibrations
and resonances, since the linear structure allows a precise
frequency characterization of the output trajectory. In the
same manner, filters for uniform B-splines generation, that
are characterized by a similar structure, can be designed with
the purpose of properly shaping their frequency spectrum.
Therefore, by selecting the trajectory/filter parameters it is
possible to suppress residual vibrations, that may be present
because elastic phenomena affecting the robotic system. The
effectiveness of the proposed approach is demonstrated by
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applying it for the generation of a 3D trajectory to be tracked
by a cartesian robot with elastic joints.
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[10] A. Olabi, R. B́eaŕee, O. Gibaru, and M. Damak, “Feedrate planning
for machining with industrial six-axis robots,”Control Engineering
Practice, vol. 18, no. 5, pp. 471–482, 2010.

[11] P. Lambrechts, M. Boerlage, and M. Steinbuch, “Trajectory planning
and feedforward design for electromechanical motion systems,” Con-
trol Engineering Practice, vol. 13, pp. 145–157, 2005.
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Third Order System for the Generation of Minimum-Time Trajectories
with Asymmetric Bounds on Velocity, Acceleration, and Jerk

Corrado Guarino Lo Bianco and Fabio Ghilardelli

Abstract— Reference signals used to drive feedback control
loops are often evaluated on-the-fly on the basis of the systems
operating conditions. As a consequence, it is very difficult to
guarantee a priori properties like continuity or the existence of
bounds on the signal dynamics and, therefore, control systems
performances could deteriorate. Improved answers can be
obtained if input signals are properly smoothed. The paper
proposes a possible filtering system which output mimics at
best any given input signal, compatibly with some smoothness
requirements. In particular, generated signals are continuous
up to the second time derivative and their first three time
derivatives are constrained between assigned bounds. Differ-
ently from analogous solutions proposed in the past, it also
handles asymmetric bounds.

I. INTRODUCTION

The behavior of control systems is affected by the charac-
teristics of their input signals. It is well known that, generally,
system performances improve when smooth inputs are used.
For this reason, when possible, references which are contin-
uous up to the nth time derivative are adopted. Furthermore,
system electro-mechanic limitations often impose bounds on
the maximum allowable values of such derivatives: Tracking
is lost every time bounds are violated. For these reasons ref-
erence signals that admit bounded first, second and third time
derivatives are commonly used in industrial applications.
Unfortunately, in many practical cases, driving signals derive
from external control loops or depend on events that cannot
be predicted in advance. In all these cases, smoothness
cannot be guaranteed a priori and, conversely, discontinuities
could easily appear. In order to avoid possible problems,
rough signals are typically filtered by means of real-time
planning systems, that replace them with trajectories that are
characterized by the required degrees of smoothness.

Several online planners have been proposed in the litera-
ture, all of them characterized by minimum-time transients.
They can be divided into two main families. In the first
family, trajectories are planned by means of appropriate
decision trees. In [1], in a robotic context and for continuous
time frameworks, step reference signals were interpolated by
means of trajectories characterized by bounded velocities,
accelerations and jerks. The study was continued, for a
multidimensional problem, in [2] by considering variable
reference signals by fulfilling given constraints on velocities
and accelerations. In [3], still for a multidimensional case,
optimal online trajectories were generated for step reference

This work was partially supported by the Ateneo Italo Tedesco in the
framework of a Vigoni project.

The authors are with the Dip. di Ing. dell’Informazione, University of
Parma, Italy, email: {guarino,fghilardelli}@ce.unipr.it

signals by also managing constraints on the maximum jerk.
The discrete-time solution recently devised in [4] extends
previous results by also admitting generic reference signals.
In the same paper an useful classification for the online
trajectory planners is proposed.

In the second family, trajectories are obtained by means
of dynamic filters. Such filters are constituted by a chain
of integrators that are driven with variable structure sliding-
mode controllers. They are able to manage generic ref-
erence signals, while output signals are still characterized
by minimum-time behaviors. Early works on this approach
appeared in [5], [6] and in [7], [8] respectively for continuous
and discrete-time frameworks. Given solutions were based on
second order filters that can guarantee the fulfillment of given
bounds on the velocity and the acceleration signals. Recently,
in [9], a chattering suppression method has been proposed
in order to use a continuous filter within a discrete-time
environment. A third-order continuous-time solution, also
managing bounds on the jerk, was proposed in [10], while
in [11] a dicrete-time implementation that only considers
jerk bounds was synthesized. Such solution has been recently
improved in [12] in order to simultaneously handle velocity,
acceleration and jerk limits.

Above mentioned approaches only consider symmetric
bounds. However, it is possible to cite applications, like,
e.g., those proposed in [13], [14], that intrinsically admit
asymmetric limits. For this reason, second-order filtering
schemes, that are able to handle asymmetric constraints on
the velocity and the acceleration, were proposed in [15],
[14], [16]. Recently, an application that also requires the
imposition of asymmetric bounds on jerk has been proposed
in [17].

The new discrete-time third-order filter devised in this
paper is able to generate trajectories that fulfill such require-
ment. Moreover, like its predecessors, it is able to manage
generic reference signals, its transients are minimum-time
and, finally, bounds on velocity, acceleration, and jerk can
be changed in real time.

The paper is organized as follows. In §II the problem
is formulated and solved by means of a novel third-order
discrete-time filter. Convergence properties of the filter are
analyzed in §III and in §IV. A test case is proposed in §V,
while §VI reports some final conclusions.

II. THE OPTIMAL TRAJECTORY SCALING PROBLEM AND
THE DISCRETE-TIME FILTER

In the following, subscript i ∈ Z indicates sampled vari-
ables acquired at time t = iT , where T is the system sampling
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Fig. 1. The discrete-time system which solves Problem 1. The system is
composed by a dynamic chain based on three integrators and an algebraic
variable structure controller.

time. Let us consider the following problem:
Problem 1: Design a nonlinear discrete-time filter whose

output xi tracks at best a given reference signal ri which is
known together with its first and second time derivatives,
while

...r i = 0. The filter must guarantee that first, second,
and third time derivatives of xi are bounded between given
asymmetric limits, i.e.,

ẋ− ≤ ẋi ≤ ẋ+, ẍ− ≤ ẍi ≤ ẍ+, U− ≤ ...x i ≤U+ . (1)

The bounds must be freely assignable and could be time-
varying: They could also change during transients. If (1) are
not satisfied, for example due to the filter initial conditions or
to a sudden bounds change,

...x must be forced in a single step
within the given limits, while ẋ and ẍ must reach the assigned
bounds in minimum time. If a discontinuous signal ri is
applied, or ri admits unfeasible time derivatives, its tracking
is voluntarily lost. It is achieved again, still in minimum
time, if ri newly becomes feasible. In general, every time
a feasible input signal ri is applied to the filter, tracking
condition xi = ri must be obtained in minimum time and,
compatibly with (1), without overshoot.

Practically, given any reference signal ri, filter output
xi must track it at best compatibly with the constraints.
According to the definition of Problem 1, feasibility is prior
to optimality, thus ri is voluntarily lost any time it becomes
unfeasible. The problem is clearly similar to that considered
in [12], but, as a novelty, the jerk constraint is supposed
to be asymmetric. This apparently small improvement, that
is essential in applications like that proposed in [17], has
required a complete redefinition of the filter control laws.
Practically, while the structure of the discrete-time filter, as
shown in Fig. 1, is the same considered in [12], i.e., it is made
of a chain of three integrators driven by an Algebraic Variable
Structure Controller (AVSC), the AVSC equations have been
completely redefined in order to fulfill the new requirements.
The system dynamics is only due to the integrators’ chain
and can also be represented in the following state-space form

xi+1 = A xi +b ui , (2)

where xi := [xi ẋi ẍi]
T is the system state and

A =

 1 T T 2

2
0 1 T
0 0 1

 , b =

 T 3

6
T 2

2
T

 . (3)

Reference signal ri is evaluated as follows

ri+1 := Ari , (4)

where ri := [ri ṙi r̈i]
T . A step, a ramp or a parabola are

generated depending on the initial values chosen for ṙi and
r̈i. According to the hypothesis,

...r i = 0.

In order to formulate the control law for the AVSC, let us
first consider the following change of coordinates yi := xi−ri,
ẏi := ẋi− ṙi, ÿi := ẍi− r̈i, which places the system origin on
the trajectory to be tracked. Due to (4), system (2) becomes

yi+1 = A yi +b ui , (5)

where A and b coincide with (3), while yi := [yi ẏi ÿi]
T .

A further change of coordinates is required to eliminate
sampling time T from matrices A and b. Because of the
asymmetry of the jerk constraint, required transformation
yi = Wzi differs from the one proposed in [12]. Indeed, the
transformation matrix, that is defined as following

W :=

 T 3 −T 3 T 3

6
0 T 2 −T 2

2
0 0 T

 , (6)

does not depend on the jerk bounds. System (5) becomes

zi+1 = Ad zi +bd ui , (7)

where zi := [z1,i z2,i z3,i]
T and

Ad =

 1 1 1
0 1 1
0 0 1

 , bd =

 1
1
1

 . (8)

Matrix W is non singular, so that the inverse transformation
zi = W−1 yi exists with

W−1 =

 1
T 3

1
T 2

1
3T

0 1
T 2

1
2T

0 0 1
T

 . (9)

The following AVSC solves Problem 1 (in the following,
subscript i has been dropped for conciseness):

z+2 :=
ẋ+− ṙ

T 2 − r̈
2T

, (10)

z−2 :=
ẋ−− ṙ

T 2 − r̈
2T

, (11)

z+3 :=
ẍ+

T
, (12)

z−3 :=
ẍ−

T
, (13)

z+2 :=−
⌈
−

z+3
U−

⌉[
z+3 +

U−

2

(⌈
−

z+3
U−

⌉
−1
)]

, (14)

z−2 :=−
⌈
−

z−3
U+

⌉[
z−3 +

U+

2

(⌈
−

z−3
U+

⌉
−1
)]

, (15)

d1 := z2− z+2 , (16)

d2 := z2− z−2 , (17)

for n=1,2:

γn :=

 z+2 if dn < z+2
dn if z+2 ≤ dn ≤ z−2
z−2 if dn > z−2

, (18)

κn :=
{

U− if dn ≤ 0
U+ if dn > 0 , (19)

138



mn :=

⌊
1
2
+

√
1
4
+2
∣∣∣∣ γn

κn

∣∣∣∣
⌋
, (20)

σn :=− γn

mn
− mn−1

2
κn−

r̈
T

, (21)

end for
[α β ] :=

{
[U− U+] if η > 0
[U+ U−] if η ≤ 0 , (22)

σ3 := − 2
h(h+ k)

z1−
2h+ k−1
h(h+ k)

z2−
k(1− k2)

6h(h+ k)
α

−2h3−3h2 +h+3h2k−3hk
6h(h+ k)

β , (23)

σ :=

 σ1 if σ1 < σ3
σ3 if σ2 ≤ σ3 ≤ σ1
σ2 if σ3 < σ2

, (24)

δ := z3−σ , (25)

u :=


−U−sat

(
δ

U−

)
if δ ≥ 0

−U+sat
(

δ

U+

)
if δ < 0

, (26)

where z1, z2 and z3 are the three components of z, while
integers h, k, and η are functions of z1 and z2. Details on
the definition of h, k, and η can be found [11]. The two
operators b·c and d·e respectively evaluate the floor and the
ceil of a real number. Function sat(·) saturates its argument
to ±1.

The AVSC is designed by means of sliding mode tech-
niques in order to robustly drive the system state toward the
origin, i.e., toward z = 0, compatibly with the constraints.
This as well implies that y is driven toward the origin, which,
in turn, means that output x tracks r. The AVSC achieves
this result by switching, according to (24), between three
different Sliding Surfaces (SS), namely σ1, σ2, and σ3, each
of them surrounded by an appropriate Boundary Layer (BL).
The three SSs cover the same roles of those proposed in [12]:
σ3 drives the system toward the origin in minimum time and
by simultaneously fulfilling the jerk constraint, while σ1 and
σ2 are used to satisfy the velocity and acceleration bounds.
The switching criteria is the same implemented in [12], so
that the reader can refer to that work for details concerning
the underlying mechanisms. Since feasibility represents the
prior target, σ1 and σ2 are primarily selected in order to
accomplish this requirement in minimum time, but, as soon
as feasibility does no more represent an issue, σ3 is used in
order to reach the origin in minimum time. Similarities with
the filter proposed in [12] end here, since the three surfaces,
due to the constraints asymmetry, have been completely
redesigned.

In the next sections the filter is analyzed in detail. In partic-
ular, in §III the characteristics of σ3 are investigated in order
to prove that such surface robustly leads the system toward
the origin in minimum time by simultaneously fulfilling the
constraint on the maximum jerk. Then, §IV will show that,
by means of the two additional surfaces σ1 and σ2, it is

possible to robustly guarantee the convergence of the state
toward an area that is feasible with respect to the velocity
and the acceleration constraints.

III. THE CONVERGENCE PROPERTIES OF σ3

In order to prove that σ3 drives the system in minimum
time toward the origin, it is first necessary to identify the set
of points in the z-space from which the origin itself can be
reached in minimum time compatibly with the constraint on
the maximum jerk. Such points can be found by applying
the maximum admissible values of command signal u, i.e.,
u =U+ or u =U− and by backward integrating system (7).
Let us define an additional parameter η =±1: If η = 1 then
command signal u = U− is initially used, while, viceversa,
if η = −1 then u = U+. According to this procedure, the
following set of points is obtained

p(k,η) =


− 1

6 k
(
k2−3k+2

)
α

1
2 k (k−1)α

−k α

 , (27)

where α depends on η and it is evaluated according to
(22), while k ∈ Z indicates the number of back integrations
occurred.

Remark 1: Given any point defined according to (27), it is
immediately possible to know the number of steps required
to converge toward the origin, e.g., from point p(k,η) the
origin is reached in minimum time after k sampling times.
Points p(k,η) can be used as initial conditions for a further
backward integration process. If a generic point p(k,1), has
been reached by using u = U−, the new backward process
will adopts u = U+. Similarly, command signal u = U− is
used for points p(k,−1). In this way, the following new set
of points p(h,k,η) is found

p(h,k,η)=


−
[

k(k−1)(k−2)
6 + hk(h+k−2)

2

]
α− h(h−1)(h−2)

6 β[
k(k−1)

2 +hk
]

α + h(h−1)
2 β

−k α−hβ


(28)

where α and β , according to (22), depend on η , while k and
h indicate the number of steps occurred, respectively, during
the first and the second backward integration phases.

Remark 2: Given any point defined according to (28), it is
immediately possible to know the number of steps required
to converge toward the origin, more precisely h steps are
necessary to reach points p(k,η) and, then, further k steps
are required to converge to the origin. Practically, the origin
is reached in minimum time with a bang-bang control.

To simplify the notation, let us define p−h,k := p(h,k,−1)
and p+

h,k := p(h,k,1). Points p−h,k and p+
h,k, as shown in Fig. 2,

completely cover the (z1,z2)-space, that is partitioned into
two sectors depending on η .

This premises are instrumental to demonstrate that the
control law defined through equations (22), (23), (26) with

δ = z3−σ3 , (29)
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Fig. 2. Boxes (h,k,η) and points p(h,k,η) projected on the (z1,z2)-space.

is time-optimal and fulfills the jerk constraint. In particular,
this second characteristic is immediately evident from (26):
In any case u ∈ [U−,U+].

As early anticipated, an AVSC, that is based on sliding
mode techniques, is used to this purpose. Equation (22),
depending on the current value of η , switches between two
different SSs. Equation (23) expresses both of them: Because
of (22), they change in function of η . Finally, (26) wraps
the SS within an appropriate BL. As shown in Fig. 3, there
exists a direct relationship between the SSs and points p+

h,k:
Equations (22), (23), (26), and (29) associate to each point
p+

h,k a box, that is identified in the following as (h,k,1),
which upper/lower surfaces coincide with the upper/lower
BLs of the SS.

To our purposes, it is essential to prove that the adopted
control law is time-optimal. Evidently, Fig. 2 shows that σ3
covers the whole (z1,z2)-space, so that, by applying u =U+,
the BL is certainly reached in minimum time from points
placed below the SS. The same happens for points placed
above the SS if command u =U− is used. In the following
it will be proved that once the state enters inside any generic
box (h,k,η), it slides toward the origin in minimum time. In
particular, if the starting point is p(h,k,η) the convergence
is achieved, as expected, in h+ k steps, while for any other
point lying in (h,k,η) the origin is reached in h+k+1 steps.

Property 1: Consider system (7) and an initial state lo-
cated inside box (h,k,η), with h,k > 1. By applying control
law (22), (23), (26), and (29) the system evolves, in a single
step, to a new state located in box (h−1,k,η).

Proof: Let us assume that at step i system state zi
lies inside box (h,k,η). By defining the following three
independent vectors

er(h,k,η) :=


− 1

2 [k (k−1)+h(h−1)+2hk]α

(h+ k) α

−α

 , (30)
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es(h,k,η) :=


1
2 h(h−1)

−h

1

(α−β ) , (31)

et(h,k,η) :=


0

0

β −α

 , (32)

which position is shown in Fig. 3 for η = 1, it is possible to
describe zi as follows

zi = p(h,k,η)+λ er(h,k,η)+µ es(h,k,η)+ν et(h,k,η),
(33)

with λ ,µ,ν ∈ [0,1), h,k > 1 and where p(h,k,η) is defined
according to (28).

For z = zi the control law returns u = ν α +(1−ν)β so
that the state of system (7), at step i+1, evolves to

zi+1 = p(h−1,k,η)+λ ẽr +µ ẽs,

where ẽr(h,k,η) = er(h,k,η)|h=h−1, and ẽs(h,k,η) =
es(h,k,η)|h=h−1. Point zi+1 is evidently located inside box
(h− 1,k,η) and, more precisely, it lies on its lower BL if
η = 1, or on its upper BL if η = −1. It is worth noticing
that points zi, which admit the same values of λ and µ are
projected in the same point zi+1, independently from ν .

Evidently, since Property 1 applies for any generic point
of box (h,k,η) with h,k > 1, the system state reaches box
(1,k,η) after h−1 steps.

Property 2: Consider system (7) and an initial state lo-
cated inside box (1,k,η), with k > 1. By applying control
law (22), (23), (26), and (29) the system evolves, in a single
step, to a new state located in box (1,k−1,η).

Proof: Assume that at step i the system state zi lies
inside box (1,k,η), so that it can be described by means of
(33) by assuming λ ,µ,ν ∈ [0,1), h = 1, k > 1. The control
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law still returns u = ν α +(1−ν)β and, consequently, the
state evolves as follows

zi+1 = p(1,k−1,η)+λ ẽr +(1−µ) ẽt ,

with ẽr(1,k,η) = er(1,k,η)|k=k−1, and ẽt(1,k,η) =
et(1,k,η)|k=k−1. State zi+1 is evidently located inside box
(1,k − 1,η) and, more precisely, since component ẽs is
missing, it lies on a lateral face of the box. Again, as shown
in Fig.4, points zi that admit the same values of λ and µ

are plotted in the same point zi+1 independently from ν .
According to Properties 1 and 2, starting from any generic

box (h,k,η) with h,k > 1, the system state evolves into box
(1,1,η) after h+ k−2 steps. The final convergence toward
the origin is analyzed in the following property:

Property 3: Consider system (7) and an initial state lo-
cated inside box (1,1,η). By means of control law (22), (23),
(26), and (29) the state reaches the origin with a maximum
of three transitions.

Proof: Assume that at step i the system state zi is
located inside box (1,1,η), so that it can be described by
means of (33) by assuming λ ,µ,ν ∈ [0,1), h,k = 1. The
command law returns u = ν α + (1− ν)β and the state
evolves, in a single step, as follows

zi+1 = p(1,1,η)+δ es(1,1,η)+ ε et(1,1,η),

where δ ∈
[
0,− α

β−α

]
and ε ∈ [0,1]. It is easy to verify that,

when η = 1, point zi+1 is located on surface ABCD of Fig. 5,
while when η =−1 it lies on surface AEFD.

If a further step is executed from zi+1 the command signal
becomes u = ε α + (1− ε)β and the state is forced to
point zi+2 := [0 0 (δ −1)α−δ β ]T . Bearing in mind the
definition of δ , it is evident that, if zi+1 lies on ABCD
(η = 1), then zi+2 is located on segment OA, while, if zi+1
lies on AEFD (η =−1), then zi+2 is located on OD.

Finally, for any point zi+2 located on segment AD, still
with command signal u = ε α +(1−ε)β , the state is forced
to the origin in a single step.

In conclusion, if the initial state is located inside box
(h,k,η), it evolves toward the origin in no more than h+k+1
steps. It is possible to verify that if the initial state is equal
to p(h,k,η) then h+ h− 2 step are required to reach point
p(1,1,η), while only two more steps are required to reach
the origin: Convergence is achieved in h + k steps, thus
confirming the solution optimality.
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IV. THE CONVERGENCE PROPERTIES OF σ1 AND σ2

Surfaces σ1 and σ2 are designed to force the system, in
minimum time, within a zone where the velocity and the
acceleration constraints are fulfilled. One of the two surfaces
is chosen by means of (24) every time σ3 should drive
the state outside the feasible area. Such area, defined in
the (ẋ, ẍ)-space by means of a rectangle delimited by lines
ẋ = ẋ+, ẋ = ẋ−, ẍ = ẍ+, and ẍ = ẍ−, can be converted into
an equivalent area in the (z2,z3)-space. More precisely, the
velocity bounds, i.e., ẋ = ẋ+ and ẋ = ẋ−, are respectively
converted into the following limits z3 = 2

(
z2− z+2 + r̈

2T

)
,

z3 = 2
(
z2− z−2 + r̈

2T

)
, while the acceleration bounds, i.e.,

ẍ = ẍ+ and ẍ = ẍ−, become z3 = z+3 −
r̈
T , and z3 = z−3 −

r̈
T .

Dotted lines of Fig. 6 highlight the converted feasible area.
Evidently, it is independent from z1, and, for this reason, the
following discussion will only focus on the state evolution
in the (z2,z3)-subspace. Fig. 6 also shows σ1 and σ2 with
the corresponding BLs and the system trajectories: The
maximum command signals, i.e., u = U+ or u = U−, are
used when the state is outside the BLs, so that the area
within the two accelerations limits, i.e., within z3 = z+3 −

r̈
T

and z3 = z−3 −
r̈
T , is certainly reached in minimum time. Then,

the state is driven, depending on which of the two SS is used,
toward z+ or toward z−. In any case, the desired result is
achieved, since both points are evidently feasible with respect
to the velocity and the acceleration constraints. States z+ and
z− are obtained by transforming points (ẋ+,0) and (ẋ−,0) of
the (ẋ, ẍ)-space. Practically, when σ1 (or σ2) is chosen, the
system is forced in minimum time in (ẋ+,0) [or in (ẋ−,0)]:
With arguments analogous to those reported in [12], it is
possible to prove that the system state, when it is locked in
one of those two states, moves with zero acceleration and
at the maximum speed toward σ3. When such surface is
reached, z+ (or z−) is abandoned and the system can finally
converge to the origin with a feasible trajectory.

Surfaces σ1 and σ2 have been obtained by modifying the
analogous surface proposed in [16]. Indeed, bearing in mind
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(7) and (8), the system evolution in the (ẋ, ẍ)-space can be
expressed by the following state equation[

z2,i+1
z3,i+1

]
=

[
1 1
0 1

][
z2,i
z3,i

]
+

[
1
1

]
ui, (34)

i.e., the model is the same of the system already considered
in [16], but the role of the pair z1 and z2 is now played by
z2 and z3. Thus, by using the same control law proposed
in that paper, the same convergence properties are evidently
maintained: The sole difference that has been introduced is
that σ1 and σ2 are modified with respect to the original SS, so
that the state does not converge to the origin but, conversely
it converges to z+ or to z−.

V. A TEST CASE

In the test case of Fig. 7 the filter handles a discontinuous
signal made of steps, ramps and parabolas. The following
kinematic bounds have been initially assumed: ẋ+ = 2.5 m
s−1, ẋ− = −3 m s−1, ẍ+ = 3.5 m s−2, ẍ− = −4.9 m s−2,
U+ = 10 m s−3, U− = −15 m s−3. Fig. 7a compares the
original discontinuous signal with the filter outputs: x tracks
at best reference r, compatibly with the given constraints.
The small undershoot, that is highlighted by the dotted circle,
appears if the acceleration constraint is touched during the
final transient toward r. Indeed, any time such bound is
activated, the control switches to σ1 or to σ2, thus the state
abandon σ3 and an overshoot is produced. This problem
can be eliminated by managing the acceleration constraint
directly with σ3. Studies on this topic are undergoing.

The filter bounds are changed at t = 6.4 s: ẋ+ = 1.5 m s−1,
ẋ− = −2 m s−1, ẍ+ = 3 m s−2, ẍ− = −3.9 m s−2, U+ =
9 m s−3, U−=−9 m s−3. The system immediately generates
trajectories that fulfill the new limits.

A new bounds change is planned in a critical situation, i.e.,
when the filter is in the middle of a transient toward a ramp.
In particular, at t = 12.5 s, constraints assume the following
values: ẋ+ = 1.5 m s−1, ẋ− = −1 m s−1, ẍ+ = 5.5 m s−2,
ẍ− =−1.9 m s−2, U+ = 7 m s−3, U− =−9 m s−3. Owing to
these sudden changes, constraints are instantly violated (see
the dash-dotted circles in Fig. 7). As required, jerk bounds
are fulfilled in a single step, while acceleration and velocity
limits are satisfied in minimum time, compatibly with the
jerk constraints. Thus, according to the requirements, the
constraints fulfillment is considered prior with respect to the
convergence toward the origin: The ramp is hanged, still in
minimum time, only after the signal feasibility is guaranteed.

VI. CONCLUSIONS

The discrete-time filter proposed in the paper is able to
generate, starting from rough references which continuity
is not guaranteed, signals that are continuous together with
their first and second time derivatives. Moreover, it is able
to implicitly impose bounds on the first, the second, and
the third time derivatives of the output signal. Generated
transients are minimum-time. Differently from analogous
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filters proposed in the past, it robustly handles asymmetric
constraints.

The proposed planner is characterized by several ad-
vantages. First of all, it has a structure that is extremely
simple: The code length required for the implementation of
the sliding mode controller is negligible, so that the filter
can even be implemented in systems with reduced memory
capabilities. Also the computational burden is particularly
light: The average evaluation time detected with a PC based
on an Intel Core2 Duo processor, @3GHz, and equipped with
a RTAI patched operating system, is equal to 4.32e-6 s.
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Online Trajectory Generation Algorithms as an Intermediate

Layer between Robot Motion Planning and Control

Torsten Kroeger
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Abstract

Recently, a new class of online trajectory generation algorithms has been developed that allows
robots to react instantaneously to unforeseen sensor signals and events. Trajectories are com-
puted at the servo level, which allows the realization of highly reactive control systems, and which
opens the door to new robot motion control features. Instantaneous frame changes, using hybrid
switched-systems with feedback of multiple sensors, instantaneously switching from sensor-guided
to trajectory following motions (and vice versa), and filtering sensor signal under consideration of
dynamic constraints has been implemented in real-world applications.
This talk focusses on sensor-based online trajectory generation in robotic control systems, and in
particular on an intermediate layer between low-level motion control and high-level sensor-based
motion planning that contains these new algorithms. A major symbiotic effect of this use-case
is that robotic systems that are guided by higher-level planning systems obtain the ability of
performing immediate reflex motions as a reaction to unforeseen low-level events.
The online trajectory generation algorithms have been released in the Reflexxes Motion Libraries.
Samples and use-cases showing the chain from high-level motion planning to execution will accom-
pany the talk in order to provide a comprehensible insight into this interesting and relevant field
of robotics.
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